Jennifer Huidobro, Gorka Arana, Juan Manuel Madariaga
{"title":"Raman Spectroscopy Against Harmful Nitrogen-Based Compounds in Cultural Heritage Materials","authors":"Jennifer Huidobro, Gorka Arana, Juan Manuel Madariaga","doi":"10.1002/jrs.6724","DOIUrl":null,"url":null,"abstract":"<p>Nitrogen-based compounds are widespread in the environment due to various sources of natural and anthropogenic origin that introduce them from the most reducing form (the acidic ammonium cation) to the most oxidized (the nitrate anion). In addition, some environmental conditions, such as pH and redox potential, favor secondary reactions of nitrogenous compounds. An example of this is the harmful effect of nitrates on cultural heritage (CH), which poses a threat to its preservation. This is due to their high solubility and mobility, which allow them to penetrate the structure of the materials. As a result of their crystallization/dissolution and hydration/dehydration cycles, the precipitation of nitrate salts in the pores causes internal fractures, leading to the subsequent deterioration and loss of the material. The detection of these salts is a straightforward process in analytical chemistry, but it is imperative to use nondestructive and noninvasive analytical techniques, such as Raman spectroscopy, because of the need to preserve CH. In this work, we have compiled the sources and pathways that contribute to the formation of nitrogen-based compounds, especially nitrate salts in various CH components. Finally, the Raman spectrum characteristic of the nitrate family has also been explained, including the most damaging nitrates found in CH, such as niter, nitratine, nitrocalcite, nitromagnesite, nitrobarite, and nitrammite, and has been compiled. In addition, less common nitrates, some nitrites, and other ammonium compounds have been included in this database.</p>","PeriodicalId":16926,"journal":{"name":"Journal of Raman Spectroscopy","volume":"55 12","pages":"1224-1235"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrs.6724","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Raman Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrs.6724","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen-based compounds are widespread in the environment due to various sources of natural and anthropogenic origin that introduce them from the most reducing form (the acidic ammonium cation) to the most oxidized (the nitrate anion). In addition, some environmental conditions, such as pH and redox potential, favor secondary reactions of nitrogenous compounds. An example of this is the harmful effect of nitrates on cultural heritage (CH), which poses a threat to its preservation. This is due to their high solubility and mobility, which allow them to penetrate the structure of the materials. As a result of their crystallization/dissolution and hydration/dehydration cycles, the precipitation of nitrate salts in the pores causes internal fractures, leading to the subsequent deterioration and loss of the material. The detection of these salts is a straightforward process in analytical chemistry, but it is imperative to use nondestructive and noninvasive analytical techniques, such as Raman spectroscopy, because of the need to preserve CH. In this work, we have compiled the sources and pathways that contribute to the formation of nitrogen-based compounds, especially nitrate salts in various CH components. Finally, the Raman spectrum characteristic of the nitrate family has also been explained, including the most damaging nitrates found in CH, such as niter, nitratine, nitrocalcite, nitromagnesite, nitrobarite, and nitrammite, and has been compiled. In addition, less common nitrates, some nitrites, and other ammonium compounds have been included in this database.
期刊介绍:
The Journal of Raman Spectroscopy is an international journal dedicated to the publication of original research at the cutting edge of all areas of science and technology related to Raman spectroscopy. The journal seeks to be the central forum for documenting the evolution of the broadly-defined field of Raman spectroscopy that includes an increasing number of rapidly developing techniques and an ever-widening array of interdisciplinary applications.
Such topics include time-resolved, coherent and non-linear Raman spectroscopies, nanostructure-based surface-enhanced and tip-enhanced Raman spectroscopies of molecules, resonance Raman to investigate the structure-function relationships and dynamics of biological molecules, linear and nonlinear Raman imaging and microscopy, biomedical applications of Raman, theoretical formalism and advances in quantum computational methodology of all forms of Raman scattering, Raman spectroscopy in archaeology and art, advances in remote Raman sensing and industrial applications, and Raman optical activity of all classes of chiral molecules.