Fakhr Un Nisa, Khalida Naseem, Asad Aziz, Warda Hassan, Nimra Fatima, Jawayria Najeeb, Shafiq Ur Rehman, Awais Khalid, Mohammad Ehtisham Khan
{"title":"Comparative analysis of dye degradation methods: unveiling the most effective and environmentally sustainable approaches, a critical review","authors":"Fakhr Un Nisa, Khalida Naseem, Asad Aziz, Warda Hassan, Nimra Fatima, Jawayria Najeeb, Shafiq Ur Rehman, Awais Khalid, Mohammad Ehtisham Khan","doi":"10.1515/revic-2024-0042","DOIUrl":null,"url":null,"abstract":"The constant increase in population and as a result increase in industrial activities in many areas, such as textiles, cosmetics, leather, polymers, and food processing leads to the contamination of water sources with different dyes. Thus, the removal of dyes from contaminated water sources to make water reusable is the utmost requirement of the time in order to get environmental sustainability. The reason of removal is that many dyes and pollutants present in dyeing wastewater from industries have detrimental impacts on plants, wildlife, and humans. To lessen the negative effects of dye wastewater on the environment and living beings, it should be processed first to remove un-wanted components before being released in the water sources. However, due to some drawbacks of dye removal technologies, it is challenging to settle on a single solution that addresses the current dye effluent problem to make water clean. In the current work, we tried our best to elaborate different methods adopted for the treatment of dyes polluted wastewater with respect to their implementation along with drawbacks and advantages.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"38 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revic-2024-0042","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The constant increase in population and as a result increase in industrial activities in many areas, such as textiles, cosmetics, leather, polymers, and food processing leads to the contamination of water sources with different dyes. Thus, the removal of dyes from contaminated water sources to make water reusable is the utmost requirement of the time in order to get environmental sustainability. The reason of removal is that many dyes and pollutants present in dyeing wastewater from industries have detrimental impacts on plants, wildlife, and humans. To lessen the negative effects of dye wastewater on the environment and living beings, it should be processed first to remove un-wanted components before being released in the water sources. However, due to some drawbacks of dye removal technologies, it is challenging to settle on a single solution that addresses the current dye effluent problem to make water clean. In the current work, we tried our best to elaborate different methods adopted for the treatment of dyes polluted wastewater with respect to their implementation along with drawbacks and advantages.
期刊介绍:
Reviews in Inorganic Chemistry (REVIC) is a quarterly, peer-reviewed journal that focuses on developments in inorganic chemistry. Technical reviews offer detailed synthesis protocols, reviews of methodology and descriptions of apparatus. Topics are treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are committed to high quality standards and rapid handling of the review and publication process. The journal publishes all aspects of solid-state, molecular and surface chemistry. Topics may be treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are commited to high quality standards and rapid handling of the review and publication process.
Topics:
-Main group chemistry-
Transition metal chemistry-
Coordination chemistry-
Organometallic chemistry-
Catalysis-
Bioinorganic chemistry-
Supramolecular chemistry-
Ionic liquids