Phuong‐Linh Nguyen, Thi Ngat Tran, Minh Thang Le, Azeem Ullah, Duy‐Nam Phan, Ick‐Soo Kim
{"title":"Enhanced Dye Removal and Antibacterial Efficacy of Copper‐Doped ZnO Nanoparticles on Cellulose Nanofibers","authors":"Phuong‐Linh Nguyen, Thi Ngat Tran, Minh Thang Le, Azeem Ullah, Duy‐Nam Phan, Ick‐Soo Kim","doi":"10.1002/admi.202400468","DOIUrl":null,"url":null,"abstract":"Cu‐doped ZnO nanoparticle‐loaded cellulose nanofiber membranes are investigated for their potential photocatalytic and antibacterial properties. ZnO nanoparticles, both undoped and doped with copper, are synthesized by the co‐precipitation process, afterward immobilized onto cellulose nanofibers through the utilization of a dip‐coating technique. Methylene blue (MB) removal is evaluated to inspect the effectiveness of photocatalysts in both UV and Xenon lighting conditions. The morphology and structure of the composite cellulose nanofibers loaded with photocatalysts are then examined using FE‐SEM, TEM, XRD, FTIR, and UV–vis characterizations. Under visible light, the self‐cleaning effects of organic compounds are measured, presenting more than 50% of discoloration for various organic stains. The antibacterial activity is assessed using the Kirby–Bauer disc diffusion method and the plate counting method against the gram‐positive <jats:italic>Staphylococcus aureus (S. aureus)</jats:italic> and gram‐negative <jats:italic>Escherichia coli (E. coli)</jats:italic> bacteria. The current study shows that cellulose nanofibers coated with Cu‐doped ZnO nanoparticles exhibited excellent photocatalytic and antibacterial activities.","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"13 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/admi.202400468","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cu‐doped ZnO nanoparticle‐loaded cellulose nanofiber membranes are investigated for their potential photocatalytic and antibacterial properties. ZnO nanoparticles, both undoped and doped with copper, are synthesized by the co‐precipitation process, afterward immobilized onto cellulose nanofibers through the utilization of a dip‐coating technique. Methylene blue (MB) removal is evaluated to inspect the effectiveness of photocatalysts in both UV and Xenon lighting conditions. The morphology and structure of the composite cellulose nanofibers loaded with photocatalysts are then examined using FE‐SEM, TEM, XRD, FTIR, and UV–vis characterizations. Under visible light, the self‐cleaning effects of organic compounds are measured, presenting more than 50% of discoloration for various organic stains. The antibacterial activity is assessed using the Kirby–Bauer disc diffusion method and the plate counting method against the gram‐positive Staphylococcus aureus (S. aureus) and gram‐negative Escherichia coli (E. coli) bacteria. The current study shows that cellulose nanofibers coated with Cu‐doped ZnO nanoparticles exhibited excellent photocatalytic and antibacterial activities.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.