{"title":"Capping Ligand Engineering of Cadmium-Free AIZS Quantum Dots Toward Bright Electroluminescent Light-Emitting Diodes by All-Solution Process","authors":"Yongfeng Liu, Xinyi Wang, Zhaoju Gao, Wenbin Yu, Jinpeng Yang, Feng Xu, Wei Pei, Jia Wang, Min Zhou","doi":"10.1002/admi.202400385","DOIUrl":null,"url":null,"abstract":"<p>Cadmium-free AgInZnS (AIZS) quantum dots (QDs) have garnered significant research interest for applications in light-emitting diodes (LEDs); however, their performance remains limited by insulating long-chain ligands. In this study, highly fluorescent orange-emitting AIZS QDs are synthesized by replacing long-chain 1-dodecanethiol (DDT) with short-chain 1-octanethiol (OTT), achieving photoluminescence quantum yields of up to 80% in solution and 60% in film. The incorporation of OTT in combination with oleic acid and oleylamine as co-capping ligands enabled excellent dispersion of the QDs in non-polar solvents. The resulting OTT-capped AIZS QDs exhibited improved film smoothness and reduced nonradiative recombination. Furthermore, all-solution-processed QD light-emitting diodes (QLEDs) are fabricated comprising indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate/hole transporting layer/AIZS QDs/ZnO electron transporting layer/Al. The effects of OTT capping and the thickness of the AIZS emitting layer on device performance are systematically evaluated. As a result, the QLEDs demonstrated enhanced luminance and current efficiency, reaching 515 cd m<sup>−</sup><sup>2</sup> and 0.4 cd A<sup>−1</sup> respectively, representing improvements of over 50% and 33% compared to devices utilizing DDT-capped AIZS QDs. This study presents a facile and effective approach for developing high-brightness AIZS QLEDs.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"11 31","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400385","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400385","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium-free AgInZnS (AIZS) quantum dots (QDs) have garnered significant research interest for applications in light-emitting diodes (LEDs); however, their performance remains limited by insulating long-chain ligands. In this study, highly fluorescent orange-emitting AIZS QDs are synthesized by replacing long-chain 1-dodecanethiol (DDT) with short-chain 1-octanethiol (OTT), achieving photoluminescence quantum yields of up to 80% in solution and 60% in film. The incorporation of OTT in combination with oleic acid and oleylamine as co-capping ligands enabled excellent dispersion of the QDs in non-polar solvents. The resulting OTT-capped AIZS QDs exhibited improved film smoothness and reduced nonradiative recombination. Furthermore, all-solution-processed QD light-emitting diodes (QLEDs) are fabricated comprising indium tin oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate/hole transporting layer/AIZS QDs/ZnO electron transporting layer/Al. The effects of OTT capping and the thickness of the AIZS emitting layer on device performance are systematically evaluated. As a result, the QLEDs demonstrated enhanced luminance and current efficiency, reaching 515 cd m−2 and 0.4 cd A−1 respectively, representing improvements of over 50% and 33% compared to devices utilizing DDT-capped AIZS QDs. This study presents a facile and effective approach for developing high-brightness AIZS QLEDs.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.