Ali Al-Sharadqah, Karine Bagdasaryan, Ola Nusierat
{"title":"A Finite-sample bias correction method for general linear model in the presence of differential measurement errors","authors":"Ali Al-Sharadqah, Karine Bagdasaryan, Ola Nusierat","doi":"10.1007/s10182-024-00510-5","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the general linear measurement error model, in which some or all predictors are measured with error, while others are measured precisely. We propose a semi-parametric estimator that works under general mechanisms of measurement error, including differential and non-differential errors. Other popular methods, such as the corrected score and conditional score methods, only work for non-differential measurement error models, but our estimator works in all scenarios. We develop our estimator by considering a family of objective functions that depend on an unspecified weight function. Using statistical error analysis and perturbation theory, we derive the optimal weight function under the small-sigma regime. The resulting estimator is statistically optimal in all senses. Even though we develop it under the small-sigma regime, we also establish its consistency and asymptotic normality under the large sample regime. Finally, we conduct a series of numerical experiments to confirm that the proposed estimator outperforms other existing methods.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10182-024-00510-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the general linear measurement error model, in which some or all predictors are measured with error, while others are measured precisely. We propose a semi-parametric estimator that works under general mechanisms of measurement error, including differential and non-differential errors. Other popular methods, such as the corrected score and conditional score methods, only work for non-differential measurement error models, but our estimator works in all scenarios. We develop our estimator by considering a family of objective functions that depend on an unspecified weight function. Using statistical error analysis and perturbation theory, we derive the optimal weight function under the small-sigma regime. The resulting estimator is statistically optimal in all senses. Even though we develop it under the small-sigma regime, we also establish its consistency and asymptotic normality under the large sample regime. Finally, we conduct a series of numerical experiments to confirm that the proposed estimator outperforms other existing methods.
期刊介绍:
AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.