A Finite-sample bias correction method for general linear model in the presence of differential measurement errors

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Ali Al-Sharadqah, Karine Bagdasaryan, Ola Nusierat
{"title":"A Finite-sample bias correction method for general linear model in the presence of differential measurement errors","authors":"Ali Al-Sharadqah, Karine Bagdasaryan, Ola Nusierat","doi":"10.1007/s10182-024-00510-5","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the general linear measurement error model, in which some or all predictors are measured with error, while others are measured precisely. We propose a semi-parametric estimator that works under general mechanisms of measurement error, including differential and non-differential errors. Other popular methods, such as the corrected score and conditional score methods, only work for non-differential measurement error models, but our estimator works in all scenarios. We develop our estimator by considering a family of objective functions that depend on an unspecified weight function. Using statistical error analysis and perturbation theory, we derive the optimal weight function under the small-sigma regime. The resulting estimator is statistically optimal in all senses. Even though we develop it under the small-sigma regime, we also establish its consistency and asymptotic normality under the large sample regime. Finally, we conduct a series of numerical experiments to confirm that the proposed estimator outperforms other existing methods.</p>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10182-024-00510-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the general linear measurement error model, in which some or all predictors are measured with error, while others are measured precisely. We propose a semi-parametric estimator that works under general mechanisms of measurement error, including differential and non-differential errors. Other popular methods, such as the corrected score and conditional score methods, only work for non-differential measurement error models, but our estimator works in all scenarios. We develop our estimator by considering a family of objective functions that depend on an unspecified weight function. Using statistical error analysis and perturbation theory, we derive the optimal weight function under the small-sigma regime. The resulting estimator is statistically optimal in all senses. Even though we develop it under the small-sigma regime, we also establish its consistency and asymptotic normality under the large sample regime. Finally, we conduct a series of numerical experiments to confirm that the proposed estimator outperforms other existing methods.

Abstract Image

差异测量误差下一般线性模型的有限样本偏差校正方法
本文的重点是一般线性测量误差模型,在该模型中,部分或所有预测因子的测量都存在误差,而其他预测因子的测量则非常精确。我们提出了一种半参数估计器,它能在测量误差的一般机制下工作,包括微分误差和非微分误差。其他流行的方法,如校正得分法和条件得分法,只适用于非差分测量误差模型,但我们的估计器适用于所有情况。我们通过考虑一系列取决于未指定权重函数的目标函数来开发我们的估算器。利用统计误差分析和扰动理论,我们得出了小Σ机制下的最优权重函数。由此得出的估计器在所有意义上都是统计最优的。尽管我们是在小σ机制下推导的,但我们也确定了它在大样本机制下的一致性和渐近正态性。最后,我们进行了一系列数值实验,以证实所提出的估计器优于其他现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信