Composition regulation of Ni-BDC MOF architecture to enhance electrocatalytic urea oxidation in alkaline solution†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin Fu, Bo Pu, Li Pan, Ruiqi Ming, Qian Lv, Xiaobo Chen and Lihong Tian
{"title":"Composition regulation of Ni-BDC MOF architecture to enhance electrocatalytic urea oxidation in alkaline solution†","authors":"Xin Fu, Bo Pu, Li Pan, Ruiqi Ming, Qian Lv, Xiaobo Chen and Lihong Tian","doi":"10.1039/D4QM00550C","DOIUrl":null,"url":null,"abstract":"<p >Urea oxidation reaction (UOR) is a promising substitution for the oxygen evolution reaction (OER) on anode for highly efficient H<small><sub>2</sub></small> production. However, the sluggish kinetics and high oxidation potential of Ni<small><sup>II</sup></small> → Ni<small><sup>III</sup></small> severely limit the activity of Ni-based catalysts in the electrochemical UOR. Herein, composition regulation was adopted to enhance the electrocatalytic activity of a nickel-benzene dicarboxylate framework (Ni-BDC MOF)-derived electrode towards urea oxidation. In 1 M KOH with 0.33 M urea solution, the derived amorphous tri-metallic hydroxide layer on the surface of the NiMnCo MOF, induced by electro-activation, exhibited a low onset potential and a steeply rising current density with increasing applied potential. It achieved a benchmark current density of 10/100 mA cm<small><sup>−2</sup></small> at an anode potential of 1.28/1.33 V <em>vs</em>. RHE, respectively. In particular, a 500 mA cm<small><sup>−2</sup></small> current density was reached at an impressively low potential of 1.41 V <em>vs</em>. RHE. This exceptional performance is ascribed to the fact that the open framework provides a large electrochemical active surface, while the multicomponent synergy decreases the Ni<small><sup>II</sup></small> → Ni<small><sup>III</sup></small> oxidation potential, enhances electron transfer and promotes the UOR kinetics. This study suggests that rational composition regulation is a promising approach to improving the performance of Ni-based MOF materials towards electrocatalytic urea oxidation.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 20","pages":" 3272-3279"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00550c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Urea oxidation reaction (UOR) is a promising substitution for the oxygen evolution reaction (OER) on anode for highly efficient H2 production. However, the sluggish kinetics and high oxidation potential of NiII → NiIII severely limit the activity of Ni-based catalysts in the electrochemical UOR. Herein, composition regulation was adopted to enhance the electrocatalytic activity of a nickel-benzene dicarboxylate framework (Ni-BDC MOF)-derived electrode towards urea oxidation. In 1 M KOH with 0.33 M urea solution, the derived amorphous tri-metallic hydroxide layer on the surface of the NiMnCo MOF, induced by electro-activation, exhibited a low onset potential and a steeply rising current density with increasing applied potential. It achieved a benchmark current density of 10/100 mA cm−2 at an anode potential of 1.28/1.33 V vs. RHE, respectively. In particular, a 500 mA cm−2 current density was reached at an impressively low potential of 1.41 V vs. RHE. This exceptional performance is ascribed to the fact that the open framework provides a large electrochemical active surface, while the multicomponent synergy decreases the NiII → NiIII oxidation potential, enhances electron transfer and promotes the UOR kinetics. This study suggests that rational composition regulation is a promising approach to improving the performance of Ni-based MOF materials towards electrocatalytic urea oxidation.

Abstract Image

Abstract Image

调节 Ni-BDC MOF 结构的组成以提高碱性溶液中尿素的电催化氧化能力
尿素氧化反应(UOR)是阳极氧进化反应(OER)的一种有望实现高效 H2 生产的替代反应。然而,NiII → NiIII 缓慢的动力学和高氧化电位严重限制了镍基催化剂在电化学 UOR 反应中的活性。在此,我们采用成分调节的方法来提高镍-苯二羧酸框架(Ni-BDC MOF)衍生电极对尿素氧化的电催化活性。在含有 0.33 M 尿素的 1 M KOH 溶液中,镍锰钴 MOF 表面在电活化作用下形成的无定形三金属氢氧化物层显示出较低的起始电位,并随着施加电位的增加,电流密度急剧上升。在阳极电位为 1.28/1.33 V 对 RHE 时,其基准电流密度分别为 10/100 mA cm-2。尤其是在 1.41 V(相对于 RHE)的低电位条件下,达到了 500 mA cm-2 的电流密度,令人印象深刻。这种优异的性能归因于开放式框架提供了一个大的电化学活性表面,而多组分协同作用降低了 NiII → NiIII 氧化电位,增强了电子转移并促进了 UOR 动力学。这项研究表明,合理的成分调节是提高镍基 MOF 材料电催化尿素氧化性能的一种可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信