Darina Kaisheva, Georgi Kotlarski, Maria Ormanova, Angel Anchev, Vladimir Dunchev, Borislav Stoyanov, Stefan Valkov
{"title":"Electron Beam Welding of Copper and Aluminum Alloy with Magnetron Sputtered Titanium Filler","authors":"Darina Kaisheva, Georgi Kotlarski, Maria Ormanova, Angel Anchev, Vladimir Dunchev, Borislav Stoyanov, Stefan Valkov","doi":"10.3390/cryst14090752","DOIUrl":null,"url":null,"abstract":"In this work, the results from the electron beam welding of copper and Al6082T6 aluminum alloy with a titanium filler are presented. The influence of the filler on the structure and mechanical properties of the welded joint is studied in comparison with one without filler. The X-ray diffraction (XRD) method was used to obtain the phase composition of the welded joints. Scanning electron microscopy (SEM) was used for the study of the microstructure of the welds. Energy-dispersive X-ray spectroscopy (EDX) was applied to investigate the chemical composition. The mechanical properties were studied by means of microhardness measurements and tensile tests. A three-phase structure was obtained in the fusion zone consisting of an aluminum matrix, an intermetallic compound CuAl2, and pure copper. The application of Ti filler significantly decreased the amount of molten copper introduced in the molten pool and the number of intermetallic compounds (IMCs). This improved the strength of the joint; however, some quantity of IMCs was still present in the zone of fusion (FZ), which reflected the microhardness of the samples. The application of a titanium filler resulted in refining the electron beam weld’s structure. The finer structure and the reduced amount of the brittle intermetallic phases has led to an increase in the strength of the joint.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"20 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090752","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the results from the electron beam welding of copper and Al6082T6 aluminum alloy with a titanium filler are presented. The influence of the filler on the structure and mechanical properties of the welded joint is studied in comparison with one without filler. The X-ray diffraction (XRD) method was used to obtain the phase composition of the welded joints. Scanning electron microscopy (SEM) was used for the study of the microstructure of the welds. Energy-dispersive X-ray spectroscopy (EDX) was applied to investigate the chemical composition. The mechanical properties were studied by means of microhardness measurements and tensile tests. A three-phase structure was obtained in the fusion zone consisting of an aluminum matrix, an intermetallic compound CuAl2, and pure copper. The application of Ti filler significantly decreased the amount of molten copper introduced in the molten pool and the number of intermetallic compounds (IMCs). This improved the strength of the joint; however, some quantity of IMCs was still present in the zone of fusion (FZ), which reflected the microhardness of the samples. The application of a titanium filler resulted in refining the electron beam weld’s structure. The finer structure and the reduced amount of the brittle intermetallic phases has led to an increase in the strength of the joint.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.