Irving K. Cashwell, Donovan A. Thomas, Jonathan R. Skuza, Aswini K. Pradhan
{"title":"Electronic Properties of Atomic Layer Deposited HfO2 Thin Films on InGaAs Compared to HfO2/GaAs Semiconductors","authors":"Irving K. Cashwell, Donovan A. Thomas, Jonathan R. Skuza, Aswini K. Pradhan","doi":"10.3390/cryst14090753","DOIUrl":null,"url":null,"abstract":"This paper demonstrates how the treatment of III-V semiconductor surface affects the number of defects and ensures the conformal growth of the high-k dielectric thin film. We present the electrical properties of an HfO2/InGaAs-based MOS capacitor, in which growth temperatures and surface treatments of the substrate are two key factors that contribute to the uniformity and composition of the HfO2 thin films. A remarkable asymmetry observed in capacitance versus voltage measurements was linked to the interface defects and charge redistribution, as confirmed from X-ray photoelectron spectroscopy. The GaAs substrates that were etched with only NH4OH showed a large frequency dispersion and a higher surface roughness; however, the HfO2 thin films grown on GaAs pre-treated with both NH4OH etching and (NH4)2S passivation steps produced a desirable surface and superior electronic properties.","PeriodicalId":10855,"journal":{"name":"Crystals","volume":"12 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/cryst14090753","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper demonstrates how the treatment of III-V semiconductor surface affects the number of defects and ensures the conformal growth of the high-k dielectric thin film. We present the electrical properties of an HfO2/InGaAs-based MOS capacitor, in which growth temperatures and surface treatments of the substrate are two key factors that contribute to the uniformity and composition of the HfO2 thin films. A remarkable asymmetry observed in capacitance versus voltage measurements was linked to the interface defects and charge redistribution, as confirmed from X-ray photoelectron spectroscopy. The GaAs substrates that were etched with only NH4OH showed a large frequency dispersion and a higher surface roughness; however, the HfO2 thin films grown on GaAs pre-treated with both NH4OH etching and (NH4)2S passivation steps produced a desirable surface and superior electronic properties.
期刊介绍:
Crystals (ISSN 2073-4352) is an open access journal that covers all aspects of crystalline material research. Crystals can act as a reference, and as a publication resource, to the community. It publishes reviews, regular research articles, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on article length. Full experimental details must be provided to enable the results to be reproduced. Crystals provides a forum for the advancement of our understanding of the nucleation, growth, processing, and characterization of crystalline materials. Their mechanical, chemical, electronic, magnetic, and optical properties, and their diverse applications, are all considered to be of importance.