LiNO3 regulated rigid-flexible-synergistic polymer electrolyte boosting high-performance Li metal batteries

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xuan Wang, Lisi Xu, Maosheng Li, Yuanyuan Hu, Ning Wang, Yuezhong Meng, Kai Yang, Kuirong Deng
{"title":"LiNO3 regulated rigid-flexible-synergistic polymer electrolyte boosting high-performance Li metal batteries","authors":"Xuan Wang, Lisi Xu, Maosheng Li, Yuanyuan Hu, Ning Wang, Yuezhong Meng, Kai Yang, Kuirong Deng","doi":"10.1016/j.ensm.2024.103778","DOIUrl":null,"url":null,"abstract":"<p>Conventional polymer electrolytes suffer from low ionic conductivity, poor interface compatibility, low mechanical strength and flammability. Herein, a rigid-flexible synergistic ultrastrong nonflammable polymer electrolytes (LiNO<sub>3</sub>-PPT@PI) regulated by LiNO<sub>3</sub> is developed, which consists of rigid polyimide (PI) fiber skeleton and flexible poly pentaerythritol tetraacrylate (PPT) plasticized with LiNO<sub>3</sub>/triethyl phosphate (TEP)/fluoroethylene carbonate (FEC). PI fiber skeleton enhances tensile strength of LiNO<sub>3</sub>-PPT@PI to 21.8 MPa. TEP effectively enhances ionic conductivity to 7.57 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C and improves flame retardancy. LiNO<sub>3</sub> is creatively utilized as the only lithium salt for LiNO<sub>3</sub>-PPT@PI to construct Li<sub>3</sub>N-rich solid electrolyte interphases (SEIs) and promote FEC to form LiF-rich SEIs/cathode-electrolyte interphases (CEIs) to improve interface stability, thereby enabling high-efficiency, long-term and dendrite-free cycling of LiFePO<sub>4</sub> (LFP)||Li cells and LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NCM811)||Li cells, which is superior to the LiPF<sub>6</sub>-based polymer electrolytes. LFP||Li cells with LiNO<sub>3</sub>-PPT@PI exhibit excellent cycle performance over 650 cycles with 81.8% capacity retention. This work presents a promising design strategy of safe and efficient polymer electrolytes for Li metal batteries.</p>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103778","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional polymer electrolytes suffer from low ionic conductivity, poor interface compatibility, low mechanical strength and flammability. Herein, a rigid-flexible synergistic ultrastrong nonflammable polymer electrolytes (LiNO3-PPT@PI) regulated by LiNO3 is developed, which consists of rigid polyimide (PI) fiber skeleton and flexible poly pentaerythritol tetraacrylate (PPT) plasticized with LiNO3/triethyl phosphate (TEP)/fluoroethylene carbonate (FEC). PI fiber skeleton enhances tensile strength of LiNO3-PPT@PI to 21.8 MPa. TEP effectively enhances ionic conductivity to 7.57 × 10−4 S cm−1 at 30 °C and improves flame retardancy. LiNO3 is creatively utilized as the only lithium salt for LiNO3-PPT@PI to construct Li3N-rich solid electrolyte interphases (SEIs) and promote FEC to form LiF-rich SEIs/cathode-electrolyte interphases (CEIs) to improve interface stability, thereby enabling high-efficiency, long-term and dendrite-free cycling of LiFePO4 (LFP)||Li cells and LiNi0.8Mn0.1Co0.1O2 (NCM811)||Li cells, which is superior to the LiPF6-based polymer electrolytes. LFP||Li cells with LiNO3-PPT@PI exhibit excellent cycle performance over 650 cycles with 81.8% capacity retention. This work presents a promising design strategy of safe and efficient polymer electrolytes for Li metal batteries.

Abstract Image

锂-NO3 调节型刚柔协同聚合物电解质促进高性能锂金属电池的发展
传统的聚合物电解质存在离子导电率低、界面兼容性差、机械强度低和易燃等问题。本文开发了一种由 LiNO3 调节的刚柔协同超强不易燃聚合物电解质(LiNO3-PPT@PI),它由刚性聚酰亚胺(PI)纤维骨架和用 LiNO3/磷酸三乙酯(TEP)/碳酸氟乙酯(FEC)塑化的柔性聚季戊四醇四丙烯酸酯(PPT)组成。PI 纤维骨架可将 LiNO3-PPT@PI 的拉伸强度提高到 21.8 兆帕。TEP 有效地将 30 °C 时的离子导电率提高到 7.57 × 10-4 S cm-1,并改善了阻燃性。创造性地利用 LiNO3 作为 LiNO3-PPT@PI 的唯一锂盐,构建富含 Li3N 的固体电解质相间层(SEIs),并促进 FEC 形成富含 LiF 的 SEIs/阴极-电解质相间层(CEIs),以提高界面稳定性,从而使 LiFePO4 (LFP)||Li 电池和 LiNi0.8Mn0.1Co0.1O2(NCM811)||锂电池,其性能优于基于 LiPF6 的聚合物电解质。使用 LiNO3-PPT@PI 的 LFP||Li 电池在 650 次以上的循环过程中表现出卓越的性能,容量保持率高达 81.8%。这项研究为锂金属电池提供了一种安全高效的聚合物电解质设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信