{"title":"Two-dimensional h-BAs/MoXTe (X = S, Se) heterojunctions with high photocatalytic performance and high photoelectric conversion efficiency†","authors":"Yuliang Mao and Zhiwei Zhang","doi":"10.1039/D4SE00795F","DOIUrl":null,"url":null,"abstract":"<p >In this paper, the geometric structures and electronic and optical properties of h-BAs/MoXTe (X = S, Se) heterojunctions are systematically investigated based on first-principles calculations. It is demonstrated that the h-BAs/TeMoS, h-BAs/SMoTe, h-BAs/TeMoSe, and h-BAs/SeMoTe heterojunctions are highly stable at room temperature. The four heterojunctions have extremely high carrier mobility in the order of 10<small><sup>5</sup></small> cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small> and excellent visible light absorption. Among them, the h-BAs/TeMoS, h-BAs/SMoTe, and h-BAs/SeMoTe heterojunctions have type-II band alignment. Specifically, the h-BAs/TeMoS heterojunction has a solar-to-hydrogen (STH) efficiency of up to 33.7%. The h-BAs/SeMoTe heterojunction is expected to be a direct Z-scheme photocatalyst for overall water splitting. Moreover, we also find that the h-BAs/SMoTe heterojunction has both preeminent photocatalytic performance and a high photoelectric conversion efficiency (PCE) of 22.96%. Our study shows that the h-BAs/MoXTe (X = S, Se) van der Waals heterojunctions are promising candidate materials for applications in photocatalytic water splitting, optoelectronic devices, and photovoltaic cells.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 19","pages":" 4507-4518"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00795f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the geometric structures and electronic and optical properties of h-BAs/MoXTe (X = S, Se) heterojunctions are systematically investigated based on first-principles calculations. It is demonstrated that the h-BAs/TeMoS, h-BAs/SMoTe, h-BAs/TeMoSe, and h-BAs/SeMoTe heterojunctions are highly stable at room temperature. The four heterojunctions have extremely high carrier mobility in the order of 105 cm2 V−1 s−1 and excellent visible light absorption. Among them, the h-BAs/TeMoS, h-BAs/SMoTe, and h-BAs/SeMoTe heterojunctions have type-II band alignment. Specifically, the h-BAs/TeMoS heterojunction has a solar-to-hydrogen (STH) efficiency of up to 33.7%. The h-BAs/SeMoTe heterojunction is expected to be a direct Z-scheme photocatalyst for overall water splitting. Moreover, we also find that the h-BAs/SMoTe heterojunction has both preeminent photocatalytic performance and a high photoelectric conversion efficiency (PCE) of 22.96%. Our study shows that the h-BAs/MoXTe (X = S, Se) van der Waals heterojunctions are promising candidate materials for applications in photocatalytic water splitting, optoelectronic devices, and photovoltaic cells.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.