Cu2NiSnS4/g-C3N4 S-scheme photocatalysts: interfacial surface trap states vs. hydrogen production†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Rugma T. P., Rishi Krishna B. S., K. Priyanga Kangeyan, Neppolian Bernaurdshaw, Abdullah Saad AlArifi and Sandeep Kumar Lakhera
{"title":"Cu2NiSnS4/g-C3N4 S-scheme photocatalysts: interfacial surface trap states vs. hydrogen production†","authors":"Rugma T. P., Rishi Krishna B. S., K. Priyanga Kangeyan, Neppolian Bernaurdshaw, Abdullah Saad AlArifi and Sandeep Kumar Lakhera","doi":"10.1039/D4SE00744A","DOIUrl":null,"url":null,"abstract":"<p >Graphitic carbon nitride (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>), a two-dimensional semiconducting material, shows promise in energy conversion but faces challenges such as rapid charge carrier recombination and poor visible-light absorption. To address these issues, we integrated Cu<small><sub>2</sub></small>NiSnS<small><sub>4</sub></small> (CNTS) with g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> using an ultrasonication-assisted microwave irradiation method and observed that incorporating g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> with 5 wt% CNTS produced 4.6 μmol of sacrificial hydrogen under direct sunlight irradiation over 4 h. This presents a significant 38-fold increase in photocatalytic hydrogen production compared to that of bare g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>. However, increasing the CNTS loading beyond 5 wt% gradually decreased hydrogen production. Higher CNTS loading also caused gradual quenching of photoluminescence spectra, which contradicts the hydrogen evolution results. On the other hand, time-resolved photoluminescence measurements indicated a shorter charge carrier lifetime in the composite, suggesting higher non-radiative recombination and/or a faster charge carrier separation rate. The discrepancies between PL spectra, TRPL measurements, and hydrogen production suggest the presence of a higher density of surface trap states at the CNTS/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> interface. These trap states likely facilitate faster charge separation at lower CNTS loadings but lead to increased non-radiative recombination at higher loadings, thereby reducing hydrogen production. The CNTS/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> photocatalysts showed outstanding stability over a period of ten cycles under a xenon lamp. This work provides new insights into interfacial charge transfer dynamics in heterojunction photocatalysts.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 19","pages":" 4461-4471"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00744a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphitic carbon nitride (g-C3N4), a two-dimensional semiconducting material, shows promise in energy conversion but faces challenges such as rapid charge carrier recombination and poor visible-light absorption. To address these issues, we integrated Cu2NiSnS4 (CNTS) with g-C3N4 using an ultrasonication-assisted microwave irradiation method and observed that incorporating g-C3N4 with 5 wt% CNTS produced 4.6 μmol of sacrificial hydrogen under direct sunlight irradiation over 4 h. This presents a significant 38-fold increase in photocatalytic hydrogen production compared to that of bare g-C3N4. However, increasing the CNTS loading beyond 5 wt% gradually decreased hydrogen production. Higher CNTS loading also caused gradual quenching of photoluminescence spectra, which contradicts the hydrogen evolution results. On the other hand, time-resolved photoluminescence measurements indicated a shorter charge carrier lifetime in the composite, suggesting higher non-radiative recombination and/or a faster charge carrier separation rate. The discrepancies between PL spectra, TRPL measurements, and hydrogen production suggest the presence of a higher density of surface trap states at the CNTS/g-C3N4 interface. These trap states likely facilitate faster charge separation at lower CNTS loadings but lead to increased non-radiative recombination at higher loadings, thereby reducing hydrogen production. The CNTS/g-C3N4 photocatalysts showed outstanding stability over a period of ten cycles under a xenon lamp. This work provides new insights into interfacial charge transfer dynamics in heterojunction photocatalysts.

Abstract Image

Abstract Image

Cu2NiSnS4/g-C3N4 S 型光催化剂:界面表面阱态与氢气产生
氮化石墨碳(g-C3N4)是一种二维半导体材料,在能量转换方面前景广阔,但面临着电荷载流子快速重组和可见光吸收差等挑战。为了解决这些问题,我们采用超声辅助微波辐照法将 Cu2NiSnS4(CNTS)与 g-C3N4 集成在一起,并观察到在太阳光直射下,加入 5 wt% CNTS 的 g-C3N4 在 4 小时内产生了 4.6 μmol 的牺牲氢,与裸 g-C3N4 相比,光催化产氢量显著增加了 38 倍。然而,将 CNTS 的负载量提高到 5 wt% 以上后,制氢量逐渐减少。更高的 CNTS 含量还会导致光致发光光谱逐渐淬灭,这与氢气进化结果相矛盾。另一方面,时间分辨光致发光测量结果表明,复合材料中的电荷载流子寿命较短,这表明非辐射重组较高和/或电荷载流子分离速率较快。光致发光光谱、TRPL 测量和氢气产生之间的差异表明,CNTS/g-C3N4 界面存在更高密度的表面陷阱态。这些捕获态可能会在较低的 CNTS 负载下加快电荷分离速度,但在较高负载下会导致非辐射重组增加,从而降低氢气产生量。在氙灯照射下,CNTS/g-C3N4 光催化剂在十次循环过程中表现出卓越的稳定性。这项研究为异质结光催化剂的界面电荷转移动力学提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信