Cu2NiSnS4/g-C3N4 S-scheme photocatalysts: interfacial surface trap states vs. hydrogen production†

IF 4.1 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Rugma T. P., Rishi Krishna B. S., K. Priyanga Kangeyan, Neppolian Bernaurdshaw, Abdullah Saad AlArifi and Sandeep Kumar Lakhera
{"title":"Cu2NiSnS4/g-C3N4 S-scheme photocatalysts: interfacial surface trap states vs. hydrogen production†","authors":"Rugma T. P., Rishi Krishna B. S., K. Priyanga Kangeyan, Neppolian Bernaurdshaw, Abdullah Saad AlArifi and Sandeep Kumar Lakhera","doi":"10.1039/D4SE00744A","DOIUrl":null,"url":null,"abstract":"<p >Graphitic carbon nitride (g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>), a two-dimensional semiconducting material, shows promise in energy conversion but faces challenges such as rapid charge carrier recombination and poor visible-light absorption. To address these issues, we integrated Cu<small><sub>2</sub></small>NiSnS<small><sub>4</sub></small> (CNTS) with g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> using an ultrasonication-assisted microwave irradiation method and observed that incorporating g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> with 5 wt% CNTS produced 4.6 μmol of sacrificial hydrogen under direct sunlight irradiation over 4 h. This presents a significant 38-fold increase in photocatalytic hydrogen production compared to that of bare g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>. However, increasing the CNTS loading beyond 5 wt% gradually decreased hydrogen production. Higher CNTS loading also caused gradual quenching of photoluminescence spectra, which contradicts the hydrogen evolution results. On the other hand, time-resolved photoluminescence measurements indicated a shorter charge carrier lifetime in the composite, suggesting higher non-radiative recombination and/or a faster charge carrier separation rate. The discrepancies between PL spectra, TRPL measurements, and hydrogen production suggest the presence of a higher density of surface trap states at the CNTS/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> interface. These trap states likely facilitate faster charge separation at lower CNTS loadings but lead to increased non-radiative recombination at higher loadings, thereby reducing hydrogen production. The CNTS/g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> photocatalysts showed outstanding stability over a period of ten cycles under a xenon lamp. This work provides new insights into interfacial charge transfer dynamics in heterojunction photocatalysts.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 19","pages":" 4461-4471"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00744a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Graphitic carbon nitride (g-C3N4), a two-dimensional semiconducting material, shows promise in energy conversion but faces challenges such as rapid charge carrier recombination and poor visible-light absorption. To address these issues, we integrated Cu2NiSnS4 (CNTS) with g-C3N4 using an ultrasonication-assisted microwave irradiation method and observed that incorporating g-C3N4 with 5 wt% CNTS produced 4.6 μmol of sacrificial hydrogen under direct sunlight irradiation over 4 h. This presents a significant 38-fold increase in photocatalytic hydrogen production compared to that of bare g-C3N4. However, increasing the CNTS loading beyond 5 wt% gradually decreased hydrogen production. Higher CNTS loading also caused gradual quenching of photoluminescence spectra, which contradicts the hydrogen evolution results. On the other hand, time-resolved photoluminescence measurements indicated a shorter charge carrier lifetime in the composite, suggesting higher non-radiative recombination and/or a faster charge carrier separation rate. The discrepancies between PL spectra, TRPL measurements, and hydrogen production suggest the presence of a higher density of surface trap states at the CNTS/g-C3N4 interface. These trap states likely facilitate faster charge separation at lower CNTS loadings but lead to increased non-radiative recombination at higher loadings, thereby reducing hydrogen production. The CNTS/g-C3N4 photocatalysts showed outstanding stability over a period of ten cycles under a xenon lamp. This work provides new insights into interfacial charge transfer dynamics in heterojunction photocatalysts.

Abstract Image

Abstract Image

Cu2NiSnS4/g-C3N4 S 型光催化剂:界面表面阱态与氢气产生
氮化石墨碳(g-C3N4)是一种二维半导体材料,在能量转换方面前景广阔,但面临着电荷载流子快速重组和可见光吸收差等挑战。为了解决这些问题,我们采用超声辅助微波辐照法将 Cu2NiSnS4(CNTS)与 g-C3N4 集成在一起,并观察到在太阳光直射下,加入 5 wt% CNTS 的 g-C3N4 在 4 小时内产生了 4.6 μmol 的牺牲氢,与裸 g-C3N4 相比,光催化产氢量显著增加了 38 倍。然而,将 CNTS 的负载量提高到 5 wt% 以上后,制氢量逐渐减少。更高的 CNTS 含量还会导致光致发光光谱逐渐淬灭,这与氢气进化结果相矛盾。另一方面,时间分辨光致发光测量结果表明,复合材料中的电荷载流子寿命较短,这表明非辐射重组较高和/或电荷载流子分离速率较快。光致发光光谱、TRPL 测量和氢气产生之间的差异表明,CNTS/g-C3N4 界面存在更高密度的表面陷阱态。这些捕获态可能会在较低的 CNTS 负载下加快电荷分离速度,但在较高负载下会导致非辐射重组增加,从而降低氢气产生量。在氙灯照射下,CNTS/g-C3N4 光催化剂在十次循环过程中表现出卓越的稳定性。这项研究为异质结光催化剂的界面电荷转移动力学提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信