Exact solutions for a coherent phenomenon of condensation in conservative Hamiltonian systems

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Anxo Biasi
{"title":"Exact solutions for a coherent phenomenon of condensation in conservative Hamiltonian systems","authors":"Anxo Biasi","doi":"10.1103/physreve.110.034107","DOIUrl":null,"url":null,"abstract":"While it is known that Hamiltonian systems may undergo a phenomenon of condensation akin to Bose-Einstein condensation, not all the manifestations of this phenomenon have been uncovered yet. In this work, we present a novel form of condensation in conservative Hamiltonian systems that stands out due to its evolution through highly coherent states. The result is based on a deterministic approach to obtain exact explicit solutions representing the dynamical formation of condensates in finite time. We reveal a dual-cascade behavior during the process, featuring inverse and direct transfer of conserved quantities across the spectrum. The direct cascade yields the excitation of arbitrarily high modes in finite time, being associated with the formation of a small-scale coherent structure. We provide a fully analytic description of the processes involved.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034107","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

While it is known that Hamiltonian systems may undergo a phenomenon of condensation akin to Bose-Einstein condensation, not all the manifestations of this phenomenon have been uncovered yet. In this work, we present a novel form of condensation in conservative Hamiltonian systems that stands out due to its evolution through highly coherent states. The result is based on a deterministic approach to obtain exact explicit solutions representing the dynamical formation of condensates in finite time. We reveal a dual-cascade behavior during the process, featuring inverse and direct transfer of conserved quantities across the spectrum. The direct cascade yields the excitation of arbitrarily high modes in finite time, being associated with the formation of a small-scale coherent structure. We provide a fully analytic description of the processes involved.

Abstract Image

保守哈密顿系统中凝结现象一致性的精确解
众所周知,哈密顿系统可能会出现类似玻色-爱因斯坦凝聚的凝聚现象,但这种现象的所有表现形式尚未被发现。在这项工作中,我们提出了保守哈密顿系统中的一种新型凝结形式,它通过高度相干态的演化而脱颖而出。该成果基于一种确定性方法,以获得代表凝结物在有限时间内动态形成的精确显式解。我们揭示了这一过程中的双重级联行为,其特点是整个谱系中守恒量的反向和直接转移。直接级联会在有限时间内激发出任意高的模式,这与小尺度相干结构的形成有关。我们提供了对相关过程的完全解析描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信