Jiangxu Huang, Lei Wang, Zhenhua Chai, Baochang Shi
{"title":"Phase-field-based lattice Boltzmann method for containerless freezing","authors":"Jiangxu Huang, Lei Wang, Zhenhua Chai, Baochang Shi","doi":"10.1103/physreve.110.035301","DOIUrl":null,"url":null,"abstract":"In this paper we first propose a phase-field model for the containerless freezing problems, in which the volume expansion or shrinkage of the liquid caused by the density change during the phase change process is considered by adding a mass source term to the continuum equation. Then a phase-field-based lattice Boltzmann (LB) method is further developed to simulate solid-liquid phase change phenomena in multiphase systems. We test the developed LB method by the problem of conduction-induced freezing in a semi-infinite space, the three-phase Stefan problem, and the droplet solidification on a cold surface, and the numerical results are in agreement with the analytical and experimental solutions. In addition, the LB method is also used to study the rising bubbles with solidification. The results of the present method not only accurately capture the effect of bubbles on the solidification process, but also are in agreement with the previous work. Finally, a parametric study is carried out to examine the influences of some physical parameters on the sessile droplet solidification, and it is found that the time of droplet solidification increases with the increase of droplet volume and contact angle.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"21 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.035301","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we first propose a phase-field model for the containerless freezing problems, in which the volume expansion or shrinkage of the liquid caused by the density change during the phase change process is considered by adding a mass source term to the continuum equation. Then a phase-field-based lattice Boltzmann (LB) method is further developed to simulate solid-liquid phase change phenomena in multiphase systems. We test the developed LB method by the problem of conduction-induced freezing in a semi-infinite space, the three-phase Stefan problem, and the droplet solidification on a cold surface, and the numerical results are in agreement with the analytical and experimental solutions. In addition, the LB method is also used to study the rising bubbles with solidification. The results of the present method not only accurately capture the effect of bubbles on the solidification process, but also are in agreement with the previous work. Finally, a parametric study is carried out to examine the influences of some physical parameters on the sessile droplet solidification, and it is found that the time of droplet solidification increases with the increase of droplet volume and contact angle.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.