Borromean hypergraph formation in dense random rectangles

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Alexander R. Klotz
{"title":"Borromean hypergraph formation in dense random rectangles","authors":"Alexander R. Klotz","doi":"10.1103/physreve.110.034501","DOIUrl":null,"url":null,"abstract":"We develop a minimal model to study the stochastic formation of Borromean links within topologically entangled networks without requiring the use of knot invariants. Borromean linkages may form in entangled solutions of open polymer chains or in Olympic gel systems such as kinetoplast DNA, but it is challenging to investigate this due to the difficulty of computing three-body link invariants. Here, we investigate rectangles randomly oriented in three Cartesian planes and densely packed within a volume, and evaluate them for Hopf linking and Borromean link formation. We show that dense packings of rectangles can form Borromean triplets and larger clusters, and that in high enough density the combination of Hopf and Borromean linking can create a percolating hypergraph through the network. We present data for the percolation threshold of Borromean hypergraphs, and discuss implications for the existence of Borromean connectivity within kinetoplast DNA.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034501","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a minimal model to study the stochastic formation of Borromean links within topologically entangled networks without requiring the use of knot invariants. Borromean linkages may form in entangled solutions of open polymer chains or in Olympic gel systems such as kinetoplast DNA, but it is challenging to investigate this due to the difficulty of computing three-body link invariants. Here, we investigate rectangles randomly oriented in three Cartesian planes and densely packed within a volume, and evaluate them for Hopf linking and Borromean link formation. We show that dense packings of rectangles can form Borromean triplets and larger clusters, and that in high enough density the combination of Hopf and Borromean linking can create a percolating hypergraph through the network. We present data for the percolation threshold of Borromean hypergraphs, and discuss implications for the existence of Borromean connectivity within kinetoplast DNA.

Abstract Image

密集随机矩形中的博罗姆超图形成
我们建立了一个最小模型来研究拓扑纠缠网络中波罗曼链的随机形成,而无需使用结不变式。在开放聚合物链的纠缠溶液或奥林匹克凝胶系统(如动原 DNA)中可能会形成博罗梅因链接,但由于难以计算三体链接不变式,因此对其进行研究具有挑战性。在这里,我们研究了在三个笛卡尔平面上随机定向并在一个体积内密集堆积的矩形,并评估了它们的霍普夫链接和博罗曼链接形成。我们的研究表明,密集堆积的矩形可以形成博罗梅三联体和更大的簇,在足够高的密度下,霍普夫链接和博罗梅链接的组合可以在网络中形成渗滤超图。我们提出了博罗梅超图的渗流阈值数据,并讨论了动粒 DNA 中存在博罗梅连接的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信