Extreme fractal dimension at periodicity cascades in parameter spaces

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Carlos E. P. Abreu, Joelson D. V. Hermes, Diogo Ricardo da Costa, Everton S. Medeiros, Rene O. Medrano-T
{"title":"Extreme fractal dimension at periodicity cascades in parameter spaces","authors":"Carlos E. P. Abreu, Joelson D. V. Hermes, Diogo Ricardo da Costa, Everton S. Medeiros, Rene O. Medrano-T","doi":"10.1103/physreve.110.l032201","DOIUrl":null,"url":null,"abstract":"In the parameter spaces of nonlinear dynamical systems, we investigate the boundaries between periodicity and chaos and unveil the existence of fractal sets characterized by a singular fractal dimension that deviates greatly from the fractal sets in their vicinity. This extreme fractal dimension stands out from the typical value previously considered universal for these parameter boundaries. We show that such singular fractal sets dwell along parameter curves, called extreme curves, that intersect periodicity cascades at their centers of stability across all scales of parameter spaces. The results reported here are generally demonstrated for the class of one-dimensional maps with at least two control parameters. Generalizations to other classes of systems are possible.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.l032201","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In the parameter spaces of nonlinear dynamical systems, we investigate the boundaries between periodicity and chaos and unveil the existence of fractal sets characterized by a singular fractal dimension that deviates greatly from the fractal sets in their vicinity. This extreme fractal dimension stands out from the typical value previously considered universal for these parameter boundaries. We show that such singular fractal sets dwell along parameter curves, called extreme curves, that intersect periodicity cascades at their centers of stability across all scales of parameter spaces. The results reported here are generally demonstrated for the class of one-dimensional maps with at least two control parameters. Generalizations to other classes of systems are possible.

Abstract Image

参数空间周期级联的极限分形维度
在非线性动力学系统的参数空间中,我们研究了周期性和混沌之间的边界,并揭示了分形集的存在,其特征是奇异的分形维度大大偏离其附近的分形集。这种极端分形维度与之前认为这些参数边界普遍存在的典型值截然不同。我们的研究表明,这种奇异分形集沿着参数曲线(称为极端曲线)停留,这些曲线在参数空间的所有尺度上都与周期性级联的稳定中心相交。本文报告的结果一般是针对至少有两个控制参数的一维映射类。其他类别的系统也有可能适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信