FD-Net: A Single-Stage Fire Detection Framework for Remote Sensing in Complex Environments

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Remote Sensing Pub Date : 2024-09-11 DOI:10.3390/rs16183382
Jianye Yuan, Haofei Wang, Minghao Li, Xiaohan Wang, Weiwei Song, Song Li, Wei Gong
{"title":"FD-Net: A Single-Stage Fire Detection Framework for Remote Sensing in Complex Environments","authors":"Jianye Yuan, Haofei Wang, Minghao Li, Xiaohan Wang, Weiwei Song, Song Li, Wei Gong","doi":"10.3390/rs16183382","DOIUrl":null,"url":null,"abstract":"Fire detection is crucial due to the exorbitant annual toll on both human lives and the economy resulting from fire-related incidents. To enhance forest fire detection in complex environments, we propose a new algorithm called FD-Net for various environments. Firstly, to improve detection performance, we introduce a Fire Attention (FA) mechanism that utilizes the position information from feature maps. Secondly, to prevent geometric distortion during image cropping, we propose a Three-Scale Pooling (TSP) module. Lastly, we fine-tune the YOLOv5 network and incorporate a new Fire Fusion (FF) module to enhance the network’s precision in identifying fire targets. Through qualitative and quantitative comparisons, we found that FD-Net outperforms current state-of-the-art algorithms in performance on both fire and fire-and-smoke datasets. This further demonstrates FD-Net’s effectiveness for application in fire detection.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"50 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183382","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fire detection is crucial due to the exorbitant annual toll on both human lives and the economy resulting from fire-related incidents. To enhance forest fire detection in complex environments, we propose a new algorithm called FD-Net for various environments. Firstly, to improve detection performance, we introduce a Fire Attention (FA) mechanism that utilizes the position information from feature maps. Secondly, to prevent geometric distortion during image cropping, we propose a Three-Scale Pooling (TSP) module. Lastly, we fine-tune the YOLOv5 network and incorporate a new Fire Fusion (FF) module to enhance the network’s precision in identifying fire targets. Through qualitative and quantitative comparisons, we found that FD-Net outperforms current state-of-the-art algorithms in performance on both fire and fire-and-smoke datasets. This further demonstrates FD-Net’s effectiveness for application in fire detection.
FD-Net:复杂环境中遥感的单级火灾探测框架
火灾检测至关重要,因为火灾相关事故每年都会造成巨大的人员伤亡和经济损失。为了提高复杂环境下的森林火灾检测能力,我们提出了一种适用于各种环境的名为 FD-Net 的新算法。首先,为了提高检测性能,我们引入了火灾关注(FA)机制,该机制利用了特征图中的位置信息。其次,为防止图像裁剪过程中的几何失真,我们提出了三尺度池化(TSP)模块。最后,我们对 YOLOv5 网络进行了微调,并加入了新的火灾融合(FF)模块,以提高网络识别火灾目标的精度。通过定性和定量比较,我们发现 FD-Net 在火灾和烟火数据集上的性能均优于目前最先进的算法。这进一步证明了 FD-Net 在火灾探测中的应用效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信