AMHFN: Aggregation Multi-Hierarchical Feature Network for Hyperspectral Image Classification

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Remote Sensing Pub Date : 2024-09-13 DOI:10.3390/rs16183412
Xiaofei Yang, Yuxiong Luo, Zhen Zhang, Dong Tang, Zheng Zhou, Haojin Tang
{"title":"AMHFN: Aggregation Multi-Hierarchical Feature Network for Hyperspectral Image Classification","authors":"Xiaofei Yang, Yuxiong Luo, Zhen Zhang, Dong Tang, Zheng Zhou, Haojin Tang","doi":"10.3390/rs16183412","DOIUrl":null,"url":null,"abstract":"Deep learning methods like convolution neural networks (CNNs) and transformers are successfully applied in hyperspectral image (HSI) classification due to their ability to extract local contextual features and explore global dependencies, respectively. However, CNNs struggle in modeling long-term dependencies, and transformers may miss subtle spatial-spectral features. To address these challenges, this paper proposes an innovative hybrid HSI classification method aggregating hierarchical spatial-spectral features from a CNN and long pixel dependencies from a transformer. The proposed aggregation multi-hierarchical feature network (AMHFN) is designed to capture various hierarchical features and long dependencies from HSI, improving classification accuracy and efficiency. The proposed AMHFN consists of three key modules: (a) a Local-Pixel Embedding module (LPEM) for capturing prominent spatial-spectral features; (b) a Multi-Scale Convolutional Extraction (MSCE) module to capture multi-scale local spatial-spectral features and aggregate hierarchical local features; (c) a Multi-Scale Global Extraction (MSGE) module to explore multi-scale global dependencies and integrate multi-scale hierarchical global dependencies. Rigorous experiments on three public hyperspectral image (HSI) datasets demonstrated the superior performance of the proposed AMHFN method.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"165 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183412","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning methods like convolution neural networks (CNNs) and transformers are successfully applied in hyperspectral image (HSI) classification due to their ability to extract local contextual features and explore global dependencies, respectively. However, CNNs struggle in modeling long-term dependencies, and transformers may miss subtle spatial-spectral features. To address these challenges, this paper proposes an innovative hybrid HSI classification method aggregating hierarchical spatial-spectral features from a CNN and long pixel dependencies from a transformer. The proposed aggregation multi-hierarchical feature network (AMHFN) is designed to capture various hierarchical features and long dependencies from HSI, improving classification accuracy and efficiency. The proposed AMHFN consists of three key modules: (a) a Local-Pixel Embedding module (LPEM) for capturing prominent spatial-spectral features; (b) a Multi-Scale Convolutional Extraction (MSCE) module to capture multi-scale local spatial-spectral features and aggregate hierarchical local features; (c) a Multi-Scale Global Extraction (MSGE) module to explore multi-scale global dependencies and integrate multi-scale hierarchical global dependencies. Rigorous experiments on three public hyperspectral image (HSI) datasets demonstrated the superior performance of the proposed AMHFN method.
AMHFN:用于高光谱图像分类的聚合多层次特征网络
卷积神经网络(CNN)和变换器等深度学习方法分别能够提取局部上下文特征和探索全局依赖关系,因此成功地应用于高光谱图像(HSI)分类。然而,CNN 在建立长期依赖关系模型方面存在困难,而变换器则可能会遗漏细微的空间光谱特征。为了应对这些挑战,本文提出了一种创新的混合 HSI 分类方法,将 CNN 的分层空间光谱特征和变换器的长像素依赖关系聚合在一起。所提出的聚合多分层特征网络(AMHFN)旨在捕捉 HSI 中的各种分层特征和长依赖关系,从而提高分类精度和效率。所提出的 AMHFN 由三个关键模块组成:(a)局部像素嵌入模块(LPEM),用于捕捉突出的空间光谱特征;(b)多尺度卷积提取模块(MSCE),用于捕捉多尺度局部空间光谱特征并聚合分层局部特征;(c)多尺度全局提取模块(MSGE),用于探索多尺度全局依赖关系并整合多尺度分层全局依赖关系。在三个公共高光谱图像(HSI)数据集上进行的严格实验证明了所提出的 AMHFN 方法的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信