Cutoff Ergodicity Bounds in Wasserstein Distance for a Viscous Energy Shell Model with Lévy Noise

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
G. Barrera, M. A. Högele, J. C. Pardo, I. Pavlyukevich
{"title":"Cutoff Ergodicity Bounds in Wasserstein Distance for a Viscous Energy Shell Model with Lévy Noise","authors":"G. Barrera,&nbsp;M. A. Högele,&nbsp;J. C. Pardo,&nbsp;I. Pavlyukevich","doi":"10.1007/s10955-024-03308-6","DOIUrl":null,"url":null,"abstract":"<div><p>This article establishes explicit non-asymptotic ergodic bounds in the renormalized Wasserstein–Kantorovich–Rubinstein (WKR) distance for a viscous energy shell lattice model of turbulence with random energy injection. The system under consideration is driven either by a Brownian motion, a symmetric <span>\\(\\alpha \\)</span>-stable Lévy process, a stationary Gaussian or <span>\\(\\alpha \\)</span>-stable Ornstein–Uhlenbeck process, or by a general Lévy process with second moments. The obtained non-asymptotic bounds establish asymptotically abrupt thermalization. The analysis is based on the explicit representation of the solution of the system in terms of convolutions of Bessel functions.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 9","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03308-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03308-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This article establishes explicit non-asymptotic ergodic bounds in the renormalized Wasserstein–Kantorovich–Rubinstein (WKR) distance for a viscous energy shell lattice model of turbulence with random energy injection. The system under consideration is driven either by a Brownian motion, a symmetric \(\alpha \)-stable Lévy process, a stationary Gaussian or \(\alpha \)-stable Ornstein–Uhlenbeck process, or by a general Lévy process with second moments. The obtained non-asymptotic bounds establish asymptotically abrupt thermalization. The analysis is based on the explicit representation of the solution of the system in terms of convolutions of Bessel functions.

具有莱维噪声的粘性能壳模型的瓦瑟斯坦距离截点厄尔戈德性边界
本文为具有随机能量注入的粘性能壳晶格湍流模型建立了重正化瓦瑟斯坦-康托洛维奇-鲁宾斯坦(WKR)距离的显式非渐近遍历约束。所考虑的系统由布朗运动、对称(\α \)稳定的莱维过程、静态高斯或(\α \)稳定的奥恩斯坦-乌伦贝克过程或具有第二矩的一般莱维过程驱动。所获得的非渐进边界建立了渐进的突然热化。分析基于贝塞尔函数卷积对系统解的明确表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信