Douglas D. Kane, Nathan F. Manning, Stephen J. Jacquemin, Laura T. Johnson
{"title":"A Tale of Two Tributaries: Source Delineation of Chloride in a Distressed Watershed (Grand Lake St. Marys, Ohio)","authors":"Douglas D. Kane, Nathan F. Manning, Stephen J. Jacquemin, Laura T. Johnson","doi":"10.1007/s11270-024-07455-0","DOIUrl":null,"url":null,"abstract":"<div><p>Various sources of pollution have been assigned as contributing to the Freshwater Salinization Syndrome (FSS), by which water bodies are undergoing concurrent salinization and alkalinization. In many urban areas that receive substantial snowfall, road salt application has been ascribed as the main source of chloride driving the FSS. In rural areas, however, inorganic (e.g. chemical) and organic (e.g. manure) fertilizer applications have been found to be the most important sources of chloride. Herein, we compared daily mean concentrations of chloride over the past decade of time between Coldwater Creek and Chickasaw Creek, two tributaries of Grand Lake St. Marys, the largest reservoir in Ohio. We also used Weighted Regressions on Time, Discharge, and Season (WRTDS) analyses to visualize trends in chloride data and compared chloride vs. nitrate levels to delineate likely sources of chloride for the two streams. We found that road salt application increased over time in both subwatersheds and that 37% and 25% of the chloride could be apportioned to road salt as a source in Coldwater Creek and Chickasaw Creek, respectively. Additionally, in Coldwater Creek, 37% of the chloride was apportioned to animal or septic sources, while 25% was apportioned to inorganic fertilizers, in comparison with 30% and 42% for Chickasaw Creek. Monitoring and assessing salinized streams for both chemical and biological water quality is important, particularly since the FSS has become increasingly linked to declines in water quality (e.g. harmful algal blooms, including recent upticks in <i>Prymnesium parvum</i> blooms) and is expected to be exacerbated with global climate change (e.g. increased precipitation causing increased runoff of chloride from the land).</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11270-024-07455-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07455-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Various sources of pollution have been assigned as contributing to the Freshwater Salinization Syndrome (FSS), by which water bodies are undergoing concurrent salinization and alkalinization. In many urban areas that receive substantial snowfall, road salt application has been ascribed as the main source of chloride driving the FSS. In rural areas, however, inorganic (e.g. chemical) and organic (e.g. manure) fertilizer applications have been found to be the most important sources of chloride. Herein, we compared daily mean concentrations of chloride over the past decade of time between Coldwater Creek and Chickasaw Creek, two tributaries of Grand Lake St. Marys, the largest reservoir in Ohio. We also used Weighted Regressions on Time, Discharge, and Season (WRTDS) analyses to visualize trends in chloride data and compared chloride vs. nitrate levels to delineate likely sources of chloride for the two streams. We found that road salt application increased over time in both subwatersheds and that 37% and 25% of the chloride could be apportioned to road salt as a source in Coldwater Creek and Chickasaw Creek, respectively. Additionally, in Coldwater Creek, 37% of the chloride was apportioned to animal or septic sources, while 25% was apportioned to inorganic fertilizers, in comparison with 30% and 42% for Chickasaw Creek. Monitoring and assessing salinized streams for both chemical and biological water quality is important, particularly since the FSS has become increasingly linked to declines in water quality (e.g. harmful algal blooms, including recent upticks in Prymnesium parvum blooms) and is expected to be exacerbated with global climate change (e.g. increased precipitation causing increased runoff of chloride from the land).
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.