Transformative effects of lactic acid fermentation on maize and quality protein maize: Phytochemical characterization, functional properties, and structural features
{"title":"Transformative effects of lactic acid fermentation on maize and quality protein maize: Phytochemical characterization, functional properties, and structural features","authors":"Kritika Sharma, Savita Sharma, Rajan Sharma, Hanuman Bobade, Baljit Singh, Ramesh Kumar","doi":"10.1002/cche.10828","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Objective</h3>\n \n <p>Fermentation has a huge potential to improve the nutritional and functional properties by using the biological activity of the grain itself. The current study was performed to optimize the conditions for the fermentation of Quality Protein Maize (QPM) and maize further; the impact of fermentation treatment on the bio-techno-functional properties of QPM and maize flour was assessed.</p>\n </section>\n \n <section>\n \n <h3> Findings</h3>\n \n <p>The technological properties, including oil absorption capacity, water solubility index, emulsion activity and stability, foaming capacity and stability, protein solubility, gel consistency, and least gelation concentration, were found to be increased with the fermentation treatment, while water absorption capacity, paste clarity, and swelling power observed a decline. The findings suggested elevated levels of all the bioactive constituents with the fermentation process. The modulations at the molecular level were confirmed by the scanning electron micrographs of fermented flour. Further, changes in the peaks of Fourier transform infrared spectra and the emergence of new peaks were also reported.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The fermentation treatment altered the techno-functional properties, bioactive constituents, macromolecular structure, and molecular interactions of QPM and maize flour.</p>\n </section>\n \n <section>\n \n <h3> Significance and Novelty</h3>\n \n <p>Limited literature is available dedicated to the assessment of the nutritional, techno-functional, and phytochemical components in QPM and maize as influenced by the fermentation process. Further, changes in the structural and molecular interactions in the flour components due to fermentation treatment have not been studied comprehensively.</p>\n </section>\n </div>","PeriodicalId":9807,"journal":{"name":"Cereal Chemistry","volume":"101 6","pages":"1294-1304"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cereal Chemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cche.10828","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective
Fermentation has a huge potential to improve the nutritional and functional properties by using the biological activity of the grain itself. The current study was performed to optimize the conditions for the fermentation of Quality Protein Maize (QPM) and maize further; the impact of fermentation treatment on the bio-techno-functional properties of QPM and maize flour was assessed.
Findings
The technological properties, including oil absorption capacity, water solubility index, emulsion activity and stability, foaming capacity and stability, protein solubility, gel consistency, and least gelation concentration, were found to be increased with the fermentation treatment, while water absorption capacity, paste clarity, and swelling power observed a decline. The findings suggested elevated levels of all the bioactive constituents with the fermentation process. The modulations at the molecular level were confirmed by the scanning electron micrographs of fermented flour. Further, changes in the peaks of Fourier transform infrared spectra and the emergence of new peaks were also reported.
Conclusions
The fermentation treatment altered the techno-functional properties, bioactive constituents, macromolecular structure, and molecular interactions of QPM and maize flour.
Significance and Novelty
Limited literature is available dedicated to the assessment of the nutritional, techno-functional, and phytochemical components in QPM and maize as influenced by the fermentation process. Further, changes in the structural and molecular interactions in the flour components due to fermentation treatment have not been studied comprehensively.
期刊介绍:
Cereal Chemistry publishes high-quality papers reporting novel research and significant conceptual advances in genetics, biotechnology, composition, processing, and utilization of cereal grains (barley, maize, millet, oats, rice, rye, sorghum, triticale, and wheat), pulses (beans, lentils, peas, etc.), oilseeds, and specialty crops (amaranth, flax, quinoa, etc.). Papers advancing grain science in relation to health, nutrition, pet and animal food, and safety, along with new methodologies, instrumentation, and analysis relating to these areas are welcome, as are research notes and topical review papers.
The journal generally does not accept papers that focus on nongrain ingredients, technology of a commercial or proprietary nature, or that confirm previous research without extending knowledge. Papers that describe product development should include discussion of underlying theoretical principles.