Recovery of Phosphate From Aqueous Solution by Mg/Ca-Modified Biochar Derived From Dewatered Dry Sludge and Waste Almond Shells and Its Potential Application

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Dong Yang, Jia-li Cui, Chao-neng Ning, Feng Zhang, Jing-yi Gao
{"title":"Recovery of Phosphate From Aqueous Solution by Mg/Ca-Modified Biochar Derived From Dewatered Dry Sludge and Waste Almond Shells and Its Potential Application","authors":"Dong Yang, Jia-li Cui, Chao-neng Ning, Feng Zhang, Jing-yi Gao","doi":"10.1007/s11270-024-07498-3","DOIUrl":null,"url":null,"abstract":"<p>Phosphorus is an essential element of ecosystems, supporting the growth of plants and animals; however, its excessive presence in water can lead to eutrophication. In this study, the phosphate adsorbent SA2:8 Mg/Ca was prepared by loading calcium and magnesium onto sludge and almond shell. Various characterization methods were used to analyze biochar, and the phosphorus removal effect of SA2:8 Mg/Ca under different conditions was evaluated. The results showed that the phosphate removal rate of the adsorbent was more than 70% in the range of pH 4 ~ 12, and the adsorption performance was significantly affected by HCO<sub>3</sub><sup>−</sup> and SO<sub>4</sub><sup>2−</sup>, though the removal rate remained over 50%. The adsorption process conforms to the pseudo-second-order model, and the isothermal adsorption model aligns more closely with the Langmuir model. Increased temperature was favorable for phosphate adsorption. The theoretical maximum adsorption capacity of SA2:8 Mg/Ca was 78.27 mg/g. Thermodynamic analysis confirmed that the adsorption process was spontaneous. The main mechanisms of adsorption include electrostatic interaction, ion exchange, Lewis acid–base interaction, and chemical precipitation. Additionally, the P-laden biochar exhibited excellent potential for application: it can be used as a catalyst to improve the efficiency of persulfate catalytic degradation of ofloxacin. The removal rate of OFX in water by the SA2:8 Mg/Ca-PS system was 81.4%.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1007/s11270-024-07498-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus is an essential element of ecosystems, supporting the growth of plants and animals; however, its excessive presence in water can lead to eutrophication. In this study, the phosphate adsorbent SA2:8 Mg/Ca was prepared by loading calcium and magnesium onto sludge and almond shell. Various characterization methods were used to analyze biochar, and the phosphorus removal effect of SA2:8 Mg/Ca under different conditions was evaluated. The results showed that the phosphate removal rate of the adsorbent was more than 70% in the range of pH 4 ~ 12, and the adsorption performance was significantly affected by HCO3 and SO42−, though the removal rate remained over 50%. The adsorption process conforms to the pseudo-second-order model, and the isothermal adsorption model aligns more closely with the Langmuir model. Increased temperature was favorable for phosphate adsorption. The theoretical maximum adsorption capacity of SA2:8 Mg/Ca was 78.27 mg/g. Thermodynamic analysis confirmed that the adsorption process was spontaneous. The main mechanisms of adsorption include electrostatic interaction, ion exchange, Lewis acid–base interaction, and chemical precipitation. Additionally, the P-laden biochar exhibited excellent potential for application: it can be used as a catalyst to improve the efficiency of persulfate catalytic degradation of ofloxacin. The removal rate of OFX in water by the SA2:8 Mg/Ca-PS system was 81.4%.

Graphical Abstract

Abstract Image

从脱水干污泥和废杏仁壳中提取的镁/钙改性生物炭从水溶液中回收磷酸盐及其潜在应用
磷是生态系统的基本要素,支持动植物的生长;然而,磷在水中的过量存在会导致富营养化。本研究通过在污泥和杏仁壳中添加钙和镁制备了磷酸盐吸附剂 SA2:8Mg/Ca。采用多种表征方法对生物炭进行了分析,并评估了 SA2:8 Mg/Ca 在不同条件下的除磷效果。结果表明,在 pH 4 ~ 12 的范围内,吸附剂的磷酸盐去除率超过 70%,吸附性能受 HCO3- 和 SO42- 的影响较大,但去除率仍保持在 50%以上。吸附过程符合伪二阶模型,等温吸附模型与 Langmuir 模型更为接近。温度升高有利于磷酸盐的吸附。SA2:8 Mg/Ca 的理论最大吸附容量为 78.27 mg/g。热力学分析证实,吸附过程是自发的。吸附的主要机制包括静电作用、离子交换、路易斯酸碱作用和化学沉淀。此外,富含 P 的生物炭具有很好的应用潜力:可用作催化剂,提高过硫酸盐催化降解氧氟沙星的效率。SA2:8 Mg/Ca-PS 系统对水中 OFX 的去除率为 81.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信