{"title":"Optimizing malachite green dye removal with nano-silica clay in fixed-bed reactors","authors":"Jiten Yadav, Harneet Marwah, Janmejay Pant, Jagdeep Kumar","doi":"10.1007/s11051-024-06119-8","DOIUrl":null,"url":null,"abstract":"<div><p>Malachite green dye, widely used in various industries, poses significant threats to aquatic life and human health when present in water bodies. Traditional dye removal methods have limitations, prompting the need for innovative and sustainable solutions. This study investigates the potential of nano-ceramic clays, nano-silica clay, nano-kaolinite, nano-montmorillonite, and nano-titanium dioxide for removing malachite green dye (MGD) from water and wastewater. These clays exhibit exceptional properties, including high surface areas, specific structural characteristics, and enhanced reactivity, making them highly effective adsorbents. Various characterization techniques, such as UV–Vis spectrophotometry, FTIR analysis, XRD, SEM, high-resolution transmission electron microscopy, and BET analysis, were employed to analyse the properties of the raw and activated nano-ceramic clays. Continuous flow column experiments investigated the impact of various factors on the adsorption process. Characterization revealed critical insights into the structure, morphology, and surface properties of the nano-ceramic clays. Adsorption experiments demonstrated their effectiveness, with nano-silica clay achieving an efficient adsorption capacity under optimal conditions (pH 5, particle size 50 nm, temperature 35 °C, bed height 15 cm, dye concentration 50 mg/L, flow rate 5 mL/min, and duration 14 h), leading to 99.9% dye removal. Mathematical modelling predicted breakthrough curves for designing full-scale adsorption systems and in kinetics obeys Clark’s model and Sips isotherm model indicated that factors beyond diffusion influence the adsorption rate and type IV isotherm is obtained by the BET analysis. Regeneration studies with a 98.5% removal efficiency at the first regeneration validated the nano-ceramic clay as an effective agent dye removal, offering significant environmental benefits. Future research should focus on developing more economical synthesis methods to enhance the practical and sustainable application of nano-ceramic clays in water and wastewater treatment, thereby mitigating dye pollution effectively.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06119-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Malachite green dye, widely used in various industries, poses significant threats to aquatic life and human health when present in water bodies. Traditional dye removal methods have limitations, prompting the need for innovative and sustainable solutions. This study investigates the potential of nano-ceramic clays, nano-silica clay, nano-kaolinite, nano-montmorillonite, and nano-titanium dioxide for removing malachite green dye (MGD) from water and wastewater. These clays exhibit exceptional properties, including high surface areas, specific structural characteristics, and enhanced reactivity, making them highly effective adsorbents. Various characterization techniques, such as UV–Vis spectrophotometry, FTIR analysis, XRD, SEM, high-resolution transmission electron microscopy, and BET analysis, were employed to analyse the properties of the raw and activated nano-ceramic clays. Continuous flow column experiments investigated the impact of various factors on the adsorption process. Characterization revealed critical insights into the structure, morphology, and surface properties of the nano-ceramic clays. Adsorption experiments demonstrated their effectiveness, with nano-silica clay achieving an efficient adsorption capacity under optimal conditions (pH 5, particle size 50 nm, temperature 35 °C, bed height 15 cm, dye concentration 50 mg/L, flow rate 5 mL/min, and duration 14 h), leading to 99.9% dye removal. Mathematical modelling predicted breakthrough curves for designing full-scale adsorption systems and in kinetics obeys Clark’s model and Sips isotherm model indicated that factors beyond diffusion influence the adsorption rate and type IV isotherm is obtained by the BET analysis. Regeneration studies with a 98.5% removal efficiency at the first regeneration validated the nano-ceramic clay as an effective agent dye removal, offering significant environmental benefits. Future research should focus on developing more economical synthesis methods to enhance the practical and sustainable application of nano-ceramic clays in water and wastewater treatment, thereby mitigating dye pollution effectively.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.