Variants of the Gyárfás–Sumner conjecture: Oriented trees and rainbow paths

IF 0.9 3区 数学 Q2 MATHEMATICS
Manu Basavaraju, L. Sunil Chandran, Mathew C. Francis, Karthik Murali
{"title":"Variants of the Gyárfás–Sumner conjecture: Oriented trees and rainbow paths","authors":"Manu Basavaraju,&nbsp;L. Sunil Chandran,&nbsp;Mathew C. Francis,&nbsp;Karthik Murali","doi":"10.1002/jgt.23171","DOIUrl":null,"url":null,"abstract":"<p>Given a finite family <span></span><math>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow></math> of graphs, we say that a graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> is “<span></span><math>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow></math>-free” if <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> does not contain any graph in <span></span><math>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow></math> as a subgraph. We abbreviate <span></span><math>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow></math>-free to just “<span></span><math>\n \n <mrow>\n <mi>F</mi>\n </mrow></math>-free” when <span></span><math>\n \n <mrow>\n <mi>ℱ</mi>\n \n <mo>=</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mi>F</mi>\n \n <mo>}</mo>\n </mrow>\n </mrow></math>. A vertex-colored graph <span></span><math>\n \n <mrow>\n <mi>H</mi>\n </mrow></math> is called “rainbow” if no two vertices of <span></span><math>\n \n <mrow>\n <mi>H</mi>\n </mrow></math> have the same color. Given an integer <span></span><math>\n \n <mrow>\n <mi>s</mi>\n </mrow></math> and a finite family of graphs <span></span><math>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow></math>, let <span></span><math>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mi>ℱ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> denote the smallest integer such that any properly vertex-colored <span></span><math>\n \n <mrow>\n <mi>ℱ</mi>\n </mrow></math>-free graph <span></span><math>\n \n <mrow>\n <mi>G</mi>\n </mrow></math> having <span></span><math>\n \n <mrow>\n <mi>χ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>ℓ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mi>ℱ</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> contains an induced rainbow path on <span></span><math>\n \n <mrow>\n <mi>s</mi>\n </mrow></math> vertices. Scott and Seymour showed that <span></span><math>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mi>K</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> exists for every complete graph <span></span><math>\n \n <mrow>\n <mi>K</mi>\n </mrow></math>. A conjecture of N. R. Aravind states that <span></span><math>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>s</mi>\n </mrow></math>. The upper bound on <span></span><math>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>3</mn>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> that can be obtained using the methods of Scott and Seymour setting <span></span><math>\n \n <mrow>\n <mi>K</mi>\n \n <mo>=</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>3</mn>\n </msub>\n </mrow></math> are, however, super-exponential. Gyárfás and Sárközy showed that <span></span><math>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>3</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>4</mn>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>2</mn>\n \n <mi>s</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mn>2</mn>\n \n <mi>s</mi>\n </mrow>\n </msup>\n \n <mo>)</mo>\n </mrow>\n </mrow></math>. For <span></span><math>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow></math>, we show that <span></span><math>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>r</mi>\n </mrow>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n \n <mo>+</mo>\n \n <mi>s</mi>\n </mrow></math> and therefore, <span></span><math>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>s</mi>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>4</mn>\n </msub>\n \n <mo>)</mo>\n </mrow>\n <mspace></mspace>\n \n <mo>≤</mo>\n <mspace></mspace>\n \n <mfrac>\n <mrow>\n <msup>\n <mi>s</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo>−</mo>\n \n <mi>s</mi>\n \n <mo>+</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mrow></math>. This significantly improves Gyárfás and Sárközy's bound and also covers a bigger class of graphs. We adapt our proof to achieve much stronger upper bounds for graphs of higher girth: we prove that <span></span><math>\n \n <mrow>\n <mi>ℓ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>,</mo>\n \n <mrow>\n <mo>{</mo>\n \n <mrow>\n <msub>\n <mi>C</mi>\n \n <mn>3</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mn>4</mn>\n </msub>\n \n <mo>,</mo>\n \n <mo>…</mo>\n \n <mo>,</mo>\n \n <msub>\n <mi>C</mi>\n \n <mrow>\n <mi>g</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <msup>\n <mi>s</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mfrac>\n <mn>4</mn>\n \n <mrow>\n <mi>g</mi>\n \n <mo>−</mo>\n \n <mn>4</mn>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n </mrow></math>, where <span></span><math>\n \n <mrow>\n <mi>g</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow></math>. Moreover, in each case, our results imply the existence of at least <span></span><math>\n \n <mrow>\n <mi>s</mi>\n \n <mo>!</mo>\n \n <mo>∕</mo>\n \n <mn>2</mn>\n </mrow></math> distinct induced rainbow paths on <span></span><math>\n \n <mrow>\n <mi>s</mi>\n </mrow></math> vertices. Along the way, we obtain some new results on an oriented variant of the Gyárfás–Sumner conjecture. For <span></span><math>\n \n <mrow>\n <mi>r</mi>\n \n <mo>≥</mo>\n \n <mn>2</mn>\n </mrow></math>, let <span></span><math>\n \n <mrow>\n <msub>\n <mi>ℬ</mi>\n \n <mi>r</mi>\n </msub>\n </mrow></math> denote the orientations of <span></span><math>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>2</mn>\n \n <mo>,</mo>\n \n <mi>r</mi>\n </mrow>\n </msub>\n </mrow></math> in which one vertex has out-degree or in-degree <span></span><math>\n \n <mrow>\n <mi>r</mi>\n </mrow></math>. We show that every <span></span><math>\n \n <mrow>\n <msub>\n <mi>ℬ</mi>\n \n <mi>r</mi>\n </msub>\n </mrow></math>-free oriented graph having a chromatic number at least <span></span><math>\n \n <mrow>\n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>r</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>s</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mn>2</mn>\n \n <mi>s</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow></math> and every bikernel-perfect oriented graph with girth <span></span><math>\n \n <mrow>\n <mi>g</mi>\n \n <mo>≥</mo>\n \n <mn>5</mn>\n </mrow></math> having a chromatic number at least <span></span><math>\n \n <mrow>\n <mn>2</mn>\n \n <msup>\n <mi>s</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mfrac>\n <mn>4</mn>\n \n <mrow>\n <mi>g</mi>\n \n <mo>−</mo>\n \n <mn>4</mn>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n </mrow></math> contains every oriented tree on at most <span></span><math>\n \n <mrow>\n <mi>s</mi>\n </mrow></math> vertices as an induced subgraph.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 1","pages":"136-161"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23171","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a finite family of graphs, we say that a graph G is “ -free” if G does not contain any graph in as a subgraph. We abbreviate -free to just “ F -free” when = { F } . A vertex-colored graph H is called “rainbow” if no two vertices of H have the same color. Given an integer s and a finite family of graphs , let ( s , ) denote the smallest integer such that any properly vertex-colored -free graph G having χ ( G ) ( s , ) contains an induced rainbow path on s vertices. Scott and Seymour showed that ( s , K ) exists for every complete graph K . A conjecture of N. R. Aravind states that ( s , C 3 ) = s . The upper bound on ( s , C 3 ) that can be obtained using the methods of Scott and Seymour setting K = C 3 are, however, super-exponential. Gyárfás and Sárközy showed that ( s , { C 3 , C 4 } ) = O ( ( 2 s ) 2 s ) . For r 2 , we show that ( s , K 2 , r ) ( r 1 ) ( s 1 ) ( s 2 ) 2 + s and therefore, ( s , C 4 ) s 2 s + 2 2 . This significantly improves Gyárfás and Sárközy's bound and also covers a bigger class of graphs. We adapt our proof to achieve much stronger upper bounds for graphs of higher girth: we prove that ( s , { C 3 , C 4 , , C g 1 } ) s 1 + 4 g 4 , where g 5 . Moreover, in each case, our results imply the existence of at least s ! 2 distinct induced rainbow paths on s vertices. Along the way, we obtain some new results on an oriented variant of the Gyárfás–Sumner conjecture. For r 2 , let r denote the orientations of K 2 , r in which one vertex has out-degree or in-degree r . We show that every r -free oriented graph having a chromatic number at least ( r 1 ) ( s 1 ) ( s 2 ) + 2 s + 1 and every bikernel-perfect oriented graph with girth g 5 having a chromatic number at least 2 s 1 + 4 g 4 contains every oriented tree on at most s vertices as an induced subgraph.

Gyárfás-Sumner 猜想的变体:定向树和彩虹路径
给定一个有限图族,如果其中不包含任何子图,我们就说这个图是"-free "的。当 . 时,我们将"-free "简称为"-free"。如果一个顶点着色的图中没有两个顶点的颜色相同,那么这个图就叫做 "彩虹图"。给定一个整数和一个有限的图族,让表示最小的整数,使得任何适当顶点着色的无-图都包含一条顶点上的诱导彩虹路径。斯科特和西摩(Scott and Seymour)证明,对于每一个完整图,都存在 。N. R. Aravind 的猜想指出 。然而,使用斯科特和西摩的设置方法可以得到 的上界是超指数的。Gyárfás 和 Sárközy 证明.对于 ,我们证明 ,因此 , 。这大大改进了 Gyárfás 和 Sárközy 的约束,也涵盖了更大的图类。我们对证明进行了调整,以实现更高周长图的更强上限:我们证明 ,其中 。此外,在每种情况下,我们的结果都意味着顶点上至少存在不同的诱导彩虹路径。在此过程中,我们还获得了一些关于 Gyárfás-Sumner 猜想的定向变体的新结果。对于 ,让我们用 表示其中一个顶点有出度或入度的面向。我们证明,每一个色度数至少为的无定向图和每一个色度数至少为的有周长的双核完美定向图,都包含了最多顶点上的每一棵定向树作为诱导子图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信