Tingyi Zhou, Yuta Goto, Takeshi Makino, Callen MacPhee, Yiming Zhou, Asad M. Madni, Hideaki Furukawa, Naoya Wada, Bahram Jalali
{"title":"Time stretch with continuous-wave lasers","authors":"Tingyi Zhou, Yuta Goto, Takeshi Makino, Callen MacPhee, Yiming Zhou, Asad M. Madni, Hideaki Furukawa, Naoya Wada, Bahram Jalali","doi":"10.1063/5.0212958","DOIUrl":null,"url":null,"abstract":"Ultrafast single-shot measurement techniques with high throughput are needed for capturing rare events that occur over short time scales. Such instruments unveil non-repetitive dynamics in complex systems and enable new types of spectrometers, cameras, light scattering, and lidar systems. Photonic time stretch stands out as the most effective method for such applications. However, practical uses have been challenged by the reliance of current time stretch instruments on costly supercontinuum lasers and their fixed spectrum. The challenge is further exacerbated by such a laser’s rigid self-pulsating characteristic, which offers no ability to control the pulse timing. The latter hinders the synchronization of the optical source with the incoming signal—a crucial requirement for the detection of single-shot events. Here, we report the first demonstration of time stretch using electro-optically modulated continuous wave lasers. We do this using diode lasers and modulators commonly used in wavelength-division-multiplexing optical communication systems. This approach offers more cost-effective and compact time stretch instruments and sensors and enables the synchronization of the laser source with the incoming signal. Limitations of this new approach are also discussed, and applications in time stretch microscopy and light scattering are explored.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"42 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0212958","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrafast single-shot measurement techniques with high throughput are needed for capturing rare events that occur over short time scales. Such instruments unveil non-repetitive dynamics in complex systems and enable new types of spectrometers, cameras, light scattering, and lidar systems. Photonic time stretch stands out as the most effective method for such applications. However, practical uses have been challenged by the reliance of current time stretch instruments on costly supercontinuum lasers and their fixed spectrum. The challenge is further exacerbated by such a laser’s rigid self-pulsating characteristic, which offers no ability to control the pulse timing. The latter hinders the synchronization of the optical source with the incoming signal—a crucial requirement for the detection of single-shot events. Here, we report the first demonstration of time stretch using electro-optically modulated continuous wave lasers. We do this using diode lasers and modulators commonly used in wavelength-division-multiplexing optical communication systems. This approach offers more cost-effective and compact time stretch instruments and sensors and enables the synchronization of the laser source with the incoming signal. Limitations of this new approach are also discussed, and applications in time stretch microscopy and light scattering are explored.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.