{"title":"π mode lasing in the non-Hermitian Floquet topological system","authors":"Shuang Shen, Yaroslav V. Kartashov, Yongdong Li, Meng Cao, Yiqi Zhang","doi":"10.1063/5.0217904","DOIUrl":null,"url":null,"abstract":"π modes are unique topological edge states appearing in Floquet systems with periodic modulations of the underlying lattice structure in the evolution variable, such as dynamically modulated Su–Schrieffer–Heeger (SSH) lattices. These edge states are anomalous states usually appearing between Floquet replicas of the same band, even if the standard topological index remains zero for this band. While linear and nonlinear π modes were observed in conservative systems, they have never been studied in the nonlinear regime in the non-Hermitian systems with structured gain and losses. Here, we show that the SSH waveguide array with periodically oscillating waveguide positions in the propagation direction and with the parity-time symmetric refractive index landscape can support π modes that are damped or amplified at different ends of the array. By including nonlinearity and nonlinear absorption into our continuous system, we achieve stable lasing in the π mode at one end of the array. The representative feature of this system is that lasing in it is thresholdless and occurs even at low gain–loss amplitudes. The degree of localization of lasing π modes can be flexibly controlled by the amplitude of transverse waveguide oscillations. This work therefore introduces a new type of topological Floquet laser and a route to manipulate π modes by structured gain and losses.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"4 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0217904","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
π modes are unique topological edge states appearing in Floquet systems with periodic modulations of the underlying lattice structure in the evolution variable, such as dynamically modulated Su–Schrieffer–Heeger (SSH) lattices. These edge states are anomalous states usually appearing between Floquet replicas of the same band, even if the standard topological index remains zero for this band. While linear and nonlinear π modes were observed in conservative systems, they have never been studied in the nonlinear regime in the non-Hermitian systems with structured gain and losses. Here, we show that the SSH waveguide array with periodically oscillating waveguide positions in the propagation direction and with the parity-time symmetric refractive index landscape can support π modes that are damped or amplified at different ends of the array. By including nonlinearity and nonlinear absorption into our continuous system, we achieve stable lasing in the π mode at one end of the array. The representative feature of this system is that lasing in it is thresholdless and occurs even at low gain–loss amplitudes. The degree of localization of lasing π modes can be flexibly controlled by the amplitude of transverse waveguide oscillations. This work therefore introduces a new type of topological Floquet laser and a route to manipulate π modes by structured gain and losses.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.