Rui Ma, Zijun Huang, Wei Ke, Xichen Wang, Peng Hao, X. Steve Yao, Xinlun Cai
{"title":"Widely tunable Ka-band optoelectronic oscillator integrated on thin film lithium niobate platform","authors":"Rui Ma, Zijun Huang, Wei Ke, Xichen Wang, Peng Hao, X. Steve Yao, Xinlun Cai","doi":"10.1063/5.0214107","DOIUrl":null,"url":null,"abstract":"We report a novel widely tunable Ka-band optoelectronic oscillator (OEO) realized by integrating a Mach–Zehnder modulator (MZM), a thermally-tunable add-drop micro-ring resonator (MRR), and a Mach–Zehnder interferometer (MZI) on the thin film lithium niobate platform, with the MZM and the MRR sequentially situated in one of the MZI arms. The MZM is for modulating the optical carrier, while the add-drop MRR is for selecting a single modulation sideband to beat with the unmodulated optical carrier from the other arm of the MZI, such that the OEO oscillation frequency is determined by the frequency spacing between the optical carrier and the selected modulation sideband, while the frequency tuning range is determined by the free spectral range of the MRR. By tuning the resonances of the add-drop MRR, the oscillation frequency can be tuned from 20 to 35 GHz, with the phase noises of −85 dBc/Hz @10 kHz and −116 dBc/Hz @100 kHz in the whole tuning range, which represent much higher oscillation frequency, much wider frequency tuning range, and lower phase noise than those of the photonic integrated OEOs realized with other material platforms reported previously.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"10 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0214107","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We report a novel widely tunable Ka-band optoelectronic oscillator (OEO) realized by integrating a Mach–Zehnder modulator (MZM), a thermally-tunable add-drop micro-ring resonator (MRR), and a Mach–Zehnder interferometer (MZI) on the thin film lithium niobate platform, with the MZM and the MRR sequentially situated in one of the MZI arms. The MZM is for modulating the optical carrier, while the add-drop MRR is for selecting a single modulation sideband to beat with the unmodulated optical carrier from the other arm of the MZI, such that the OEO oscillation frequency is determined by the frequency spacing between the optical carrier and the selected modulation sideband, while the frequency tuning range is determined by the free spectral range of the MRR. By tuning the resonances of the add-drop MRR, the oscillation frequency can be tuned from 20 to 35 GHz, with the phase noises of −85 dBc/Hz @10 kHz and −116 dBc/Hz @100 kHz in the whole tuning range, which represent much higher oscillation frequency, much wider frequency tuning range, and lower phase noise than those of the photonic integrated OEOs realized with other material platforms reported previously.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.