Option pricing in the Heston model with physics inspired neural networks

IF 0.8 Q4 BUSINESS, FINANCE
Donatien Hainaut, Alex Casas
{"title":"Option pricing in the Heston model with physics inspired neural networks","authors":"Donatien Hainaut,&nbsp;Alex Casas","doi":"10.1007/s10436-024-00452-7","DOIUrl":null,"url":null,"abstract":"<div><p>In absence of a closed form expression such as in the Heston model, the option pricing is computationally intensive when calibrating a model to market quotes. this article proposes an alternative to standard pricing methods based on physics-inspired neural networks (PINNs). A PINN integrates principles from physics into its learning process to enhance its efficiency in solving complex problems. In this article, the driving principle is the Feynman-Kac (FK) equation, which is a partial differential equation (PDE) governing the derivative price in the Heston model. We focus on the valuation of European options and show that PINNs constitute an efficient alternative for pricing options with various specifications and parameters without the need for retraining.</p></div>","PeriodicalId":45289,"journal":{"name":"Annals of Finance","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Finance","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10436-024-00452-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

In absence of a closed form expression such as in the Heston model, the option pricing is computationally intensive when calibrating a model to market quotes. this article proposes an alternative to standard pricing methods based on physics-inspired neural networks (PINNs). A PINN integrates principles from physics into its learning process to enhance its efficiency in solving complex problems. In this article, the driving principle is the Feynman-Kac (FK) equation, which is a partial differential equation (PDE) governing the derivative price in the Heston model. We focus on the valuation of European options and show that PINNs constitute an efficient alternative for pricing options with various specifications and parameters without the need for retraining.

Abstract Image

利用物理学启发神经网络在赫斯顿模型中进行期权定价
由于缺乏像赫斯顿模型那样的封闭式表达,在根据市场报价校准模型时,期权定价的计算密集度很高。PINN 将物理学原理融入其学习过程,以提高其解决复杂问题的效率。在本文中,驱动原理是费曼-卡克(FK)方程,它是支配赫斯顿模型中导数价格的偏微分方程(PDE)。我们将重点放在欧式期权的估值上,并证明 PINNs 是对具有各种规格和参数的期权进行定价的有效替代方法,而无需重新训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Finance
Annals of Finance BUSINESS, FINANCE-
CiteScore
2.00
自引率
10.00%
发文量
15
期刊介绍: Annals of Finance provides an outlet for original research in all areas of finance and its applications to other disciplines having a clear and substantive link to the general theme of finance. In particular, innovative research papers of moderate length of the highest quality in all scientific areas that are motivated by the analysis of financial problems will be considered. Annals of Finance''s scope encompasses - but is not limited to - the following areas: accounting and finance, asset pricing, banking and finance, capital markets and finance, computational finance, corporate finance, derivatives, dynamical and chaotic systems in finance, economics and finance, empirical finance, experimental finance, finance and the theory of the firm, financial econometrics, financial institutions, mathematical finance, money and finance, portfolio analysis, regulation, stochastic analysis and finance, stock market analysis, systemic risk and financial stability. Annals of Finance also publishes special issues on any topic in finance and its applications of current interest. A small section, entitled finance notes, will be devoted solely to publishing short articles – up to ten pages in length, of substantial interest in finance. Officially cited as: Ann Finance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信