Resolving Matrix Spencer Conjecture up to Poly-Logarithmic Rank

IF 1.2 3区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Nikhil Bansal, Haotian Jiang, Raghu Meka
{"title":"Resolving Matrix Spencer Conjecture up to Poly-Logarithmic Rank","authors":"Nikhil Bansal, Haotian Jiang, Raghu Meka","doi":"10.1137/23m1592201","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Computing, Ahead of Print. <br/> Abstract. We give a simple proof of the matrix Spencer conjecture up to poly-logarithmic rank: given symmetric [math] matrices [math] each with [math] and rank at most [math], one can efficiently find [math] signs [math] such that their signed sum has spectral norm [math]. This result also implies a [math] qubit lower bound for quantum random access codes encoding [math] classical bits with advantage [math]. Our proof uses the recent refinement of the noncommutative Khintchine inequality due to Bandeira, Boedihardjo, and van Handel [Invent. Math., 234 (2023), pp. 419–487] for random matrices with correlated Gaussian entries.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1137/23m1592201","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Computing, Ahead of Print.
Abstract. We give a simple proof of the matrix Spencer conjecture up to poly-logarithmic rank: given symmetric [math] matrices [math] each with [math] and rank at most [math], one can efficiently find [math] signs [math] such that their signed sum has spectral norm [math]. This result also implies a [math] qubit lower bound for quantum random access codes encoding [math] classical bits with advantage [math]. Our proof uses the recent refinement of the noncommutative Khintchine inequality due to Bandeira, Boedihardjo, and van Handel [Invent. Math., 234 (2023), pp. 419–487] for random matrices with correlated Gaussian entries.
解决矩阵斯宾塞猜想,直至多对数等级
SIAM 计算期刊》,提前印刷。 摘要我们给出了矩阵斯宾塞猜想到多对数秩的一个简单证明:给定对称[数学]矩阵[数学],每个矩阵[数学]的秩最多[数学],我们可以有效地找到[数学]符号[数学],使得它们的符号和具有谱规范[数学]。这一结果也意味着以[数学]优势编码[数学]经典比特的量子随机存取码的[数学]比特下限。我们的证明使用了班代拉、布埃迪哈卓和范-汉德尔(Bandeira, Boedihardjo, and van Handel)[《发明数学》,234 (2023),第 419-487 页]最近对具有相关高斯条目的随机矩阵的非交换 Khintchine 不等式的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Computing
SIAM Journal on Computing 工程技术-计算机:理论方法
CiteScore
4.60
自引率
0.00%
发文量
68
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信