{"title":"Online Primal Dual Meets Online Matching with Stochastic Rewards: Configuration LP to the Rescue","authors":"Zhiyi Huang, Qiankun Zhang","doi":"10.1137/21m1454705","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Computing, Volume 53, Issue 5, Page 1217-1256, October 2024. <br/> Abstract. Mehta and Panigrahi (FOCS 2012, IEEE, Piscataway, NJ, 2012, pp. 728–737) introduce the problem of online matching with stochastic rewards, where edges are associated with success probabilities and a match succeeds with the probability of the corresponding edge. It is one of the few online matching problems that have defied the randomized online primal dual framework by Devanur, Jain, and Kleinberg (SODA 2013, SIAM, Philadelphia, 2013, pp. 101–107) thus far. This paper unlocks the power of randomized online primal dual in online matching with stochastic rewards by employing the configuration linear program rather than the standard matching linear program used in previous works. Our main result is a 0.572 competitive algorithm for the case of vanishing and unequal probabilities, improving the best previous bound of 0.534 by Mehta, Waggoner, and Zadimoghaddam (SODA 2015, SIAM, Philadelphia, 2015, pp. 1388–1404) and, in fact, is even better than the best previous bound of 0.567 by Mehta and Panigrahi (FOCS 2012, IEEE, Piscataway, NJ, 2012, pp. 728–737) for the more restricted case of vanishing and equal probabilities. For vanishing and equal probabilities, we get a better competitive ratio of 0.576. Our results further generalize to the vertex-weighted case due to the intrinsic robustness of the randomized online primal dual analysis.","PeriodicalId":49532,"journal":{"name":"SIAM Journal on Computing","volume":"74 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1137/21m1454705","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Computing, Volume 53, Issue 5, Page 1217-1256, October 2024. Abstract. Mehta and Panigrahi (FOCS 2012, IEEE, Piscataway, NJ, 2012, pp. 728–737) introduce the problem of online matching with stochastic rewards, where edges are associated with success probabilities and a match succeeds with the probability of the corresponding edge. It is one of the few online matching problems that have defied the randomized online primal dual framework by Devanur, Jain, and Kleinberg (SODA 2013, SIAM, Philadelphia, 2013, pp. 101–107) thus far. This paper unlocks the power of randomized online primal dual in online matching with stochastic rewards by employing the configuration linear program rather than the standard matching linear program used in previous works. Our main result is a 0.572 competitive algorithm for the case of vanishing and unequal probabilities, improving the best previous bound of 0.534 by Mehta, Waggoner, and Zadimoghaddam (SODA 2015, SIAM, Philadelphia, 2015, pp. 1388–1404) and, in fact, is even better than the best previous bound of 0.567 by Mehta and Panigrahi (FOCS 2012, IEEE, Piscataway, NJ, 2012, pp. 728–737) for the more restricted case of vanishing and equal probabilities. For vanishing and equal probabilities, we get a better competitive ratio of 0.576. Our results further generalize to the vertex-weighted case due to the intrinsic robustness of the randomized online primal dual analysis.
期刊介绍:
The SIAM Journal on Computing aims to provide coverage of the most significant work going on in the mathematical and formal aspects of computer science and nonnumerical computing. Submissions must be clearly written and make a significant technical contribution. Topics include but are not limited to analysis and design of algorithms, algorithmic game theory, data structures, computational complexity, computational algebra, computational aspects of combinatorics and graph theory, computational biology, computational geometry, computational robotics, the mathematical aspects of programming languages, artificial intelligence, computational learning, databases, information retrieval, cryptography, networks, distributed computing, parallel algorithms, and computer architecture.