The Role of α−β Quartz Transition in Fluid Storage in Crust From the Evidence of Electrical Conductivity

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Haiying Hu, Chuanyu Yin, Lidong Dai, Jinhua Lai, Yiqi Chen, Pengfei Wang, Jinlong Zhu, Songbai Han
{"title":"The Role of α−β Quartz Transition in Fluid Storage in Crust From the Evidence of Electrical Conductivity","authors":"Haiying Hu,&nbsp;Chuanyu Yin,&nbsp;Lidong Dai,&nbsp;Jinhua Lai,&nbsp;Yiqi Chen,&nbsp;Pengfei Wang,&nbsp;Jinlong Zhu,&nbsp;Songbai Han","doi":"10.1029/2024JB029140","DOIUrl":null,"url":null,"abstract":"<p>Aqueous fluids are extensively present in the middle to lower crust, as revealed by seismic and magnetotelluric soundings. The α−β quartz phase transition significantly affects many physical properties and leads to substantial microcracks that can provide pathways for the migration of crustal fluids. A systematic investigation of macroscopic physical properties and microstructure of quartz is crucial to elucidate their correlation. In the present study, the effects of water content, trace elements, orientations, and phase transition on the electrical conductivity of quartz were thoroughly evaluated at 400−900°C and 1 GPa. Individual annealing experiments were simultaneously conducted on quartz single crystals at different peak temperatures and 1 GPa to investigate the evolution and spatial distribution of microcracks using X-ray microtomography (CT) and backscattered electron imaging. We found that trace element content and orientations, rather than H<sub>2</sub>O, are the dominant factors controlling the conductivity of quartz. The distinct changes in conductivity of single crystals at around α−β phase transition temperature are attributed to the transformation of microcracks from isolated to interconnected networks, as confirmed by two-dimensional (2-D) and three-dimensional (3-D) microstructure images. Based on the variation in electrical conductivity and microstructure across the transition, it thus is proposed that the intragranular microcracks caused by quartz phase transition can serve as fluid or melt pathways within highly conductive zones present in the middle to lower crust, while α-quartz acts as an impermeable cap.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029140","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous fluids are extensively present in the middle to lower crust, as revealed by seismic and magnetotelluric soundings. The α−β quartz phase transition significantly affects many physical properties and leads to substantial microcracks that can provide pathways for the migration of crustal fluids. A systematic investigation of macroscopic physical properties and microstructure of quartz is crucial to elucidate their correlation. In the present study, the effects of water content, trace elements, orientations, and phase transition on the electrical conductivity of quartz were thoroughly evaluated at 400−900°C and 1 GPa. Individual annealing experiments were simultaneously conducted on quartz single crystals at different peak temperatures and 1 GPa to investigate the evolution and spatial distribution of microcracks using X-ray microtomography (CT) and backscattered electron imaging. We found that trace element content and orientations, rather than H2O, are the dominant factors controlling the conductivity of quartz. The distinct changes in conductivity of single crystals at around α−β phase transition temperature are attributed to the transformation of microcracks from isolated to interconnected networks, as confirmed by two-dimensional (2-D) and three-dimensional (3-D) microstructure images. Based on the variation in electrical conductivity and microstructure across the transition, it thus is proposed that the intragranular microcracks caused by quartz phase transition can serve as fluid or melt pathways within highly conductive zones present in the middle to lower crust, while α-quartz acts as an impermeable cap.

从导电性证据看α-β石英转变在地壳流体储存中的作用
地震和磁法探测显示,中下地壳广泛存在水流体。α-β石英相变会严重影响许多物理性质,并导致大量微裂缝,为地壳流体的迁移提供通道。对石英的宏观物理性质和微观结构进行系统研究对于阐明它们之间的相关性至关重要。本研究全面评估了石英在 400-900°C 和 1 GPa 下的含水量、微量元素、取向和相变对其导电性的影响。同时在不同峰值温度和 1 GPa 下对石英单晶进行了单独的退火实验,并使用 X 射线显微层析成像 (CT) 和背散射电子成像技术研究了微裂纹的演变和空间分布。我们发现,控制石英电导率的主要因素是微量元素含量和取向,而不是 H2O。二维(2-D)和三维(3-D)微结构图像证实,在α-β相变温度附近,单晶体的电导率会发生明显变化,这是因为微裂纹从孤立的网络转变为相互连接的网络。根据整个转变过程中电导率和微观结构的变化,有人提出,石英相变引起的晶内微裂缝可作为中下地壳高导电区内的流体或熔体通道,而α-石英则起着防渗帽的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信