Ni-Electrocatalytic CO2 Reduction Toward Ethanol

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ting Wang, Xinyi Duan, Rui Bai, Haoyang Li, Chen Qin, Jian Zhang, Zhiyao Duan, Kai-Jie Chen, Fuping Pan
{"title":"Ni-Electrocatalytic CO2 Reduction Toward Ethanol","authors":"Ting Wang,&nbsp;Xinyi Duan,&nbsp;Rui Bai,&nbsp;Haoyang Li,&nbsp;Chen Qin,&nbsp;Jian Zhang,&nbsp;Zhiyao Duan,&nbsp;Kai-Jie Chen,&nbsp;Fuping Pan","doi":"10.1002/adma.202410125","DOIUrl":null,"url":null,"abstract":"<p>The electroreduction of CO<sub>2</sub> offers a sustainable route to generate synthetic fuels. Cu-based catalysts have been developed to produce value-added C<sub>2+</sub> alcohols; however, the limited understanding of complex C−C coupling and reaction pathway hinders the development of efficient CO<sub>2</sub>-to-C<sub>2+</sub> alcohols catalysts. Herein, a Cu-free, highly mesoporous NiO catalyst, derived from the microphase separation of a block copolymer, is reported, which achieves selective CO<sub>2</sub> reduction toward ethanol with a Faradaic efficiency of 75.2% at −0.6 V versus RHE. The dense mesopores create a favorable local reaction environment with CO<sub>2</sub>-rich and H<sub>2</sub>O-deficient interfaces, suppressing hydrogen evolution and maximizing catalytic activity of NiO for CO<sub>2</sub> reduction. Importantly, the C<sub>1</sub>-feeding experiments, in situ spectroscopy, and theoretical calculations consistently show that the direct coupling of *CO<sub>2</sub> and *COOH is responsible for C−C bond formation on NiO, and subsequent reduction of *CO<sub>2</sub>-COOH to ethanol is energetically facile through the *COCOH and *OC<sub>2</sub>H<sub>5</sub> pathway. The unconventional C−C coupling mechanism on NiO, in contrast to the *CO dimerization on Cu, is triggered by strong CO<sub>2</sub> adsorption on the polarized Ni<sup>2+</sup>-O<sup>2−</sup> sites. The work not only demonstrates a highly selective Cu-free Ni-based alternative for CO<sub>2</sub>-to-C<sub>2+</sub> alcohols transformation but also provides a new perspective on C−C coupling toward C<sub>2+</sub> synthesis.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 44","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202410125","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electroreduction of CO2 offers a sustainable route to generate synthetic fuels. Cu-based catalysts have been developed to produce value-added C2+ alcohols; however, the limited understanding of complex C−C coupling and reaction pathway hinders the development of efficient CO2-to-C2+ alcohols catalysts. Herein, a Cu-free, highly mesoporous NiO catalyst, derived from the microphase separation of a block copolymer, is reported, which achieves selective CO2 reduction toward ethanol with a Faradaic efficiency of 75.2% at −0.6 V versus RHE. The dense mesopores create a favorable local reaction environment with CO2-rich and H2O-deficient interfaces, suppressing hydrogen evolution and maximizing catalytic activity of NiO for CO2 reduction. Importantly, the C1-feeding experiments, in situ spectroscopy, and theoretical calculations consistently show that the direct coupling of *CO2 and *COOH is responsible for C−C bond formation on NiO, and subsequent reduction of *CO2-COOH to ethanol is energetically facile through the *COCOH and *OC2H5 pathway. The unconventional C−C coupling mechanism on NiO, in contrast to the *CO dimerization on Cu, is triggered by strong CO2 adsorption on the polarized Ni2+-O2− sites. The work not only demonstrates a highly selective Cu-free Ni-based alternative for CO2-to-C2+ alcohols transformation but also provides a new perspective on C−C coupling toward C2+ synthesis.

Abstract Image

Abstract Image

Abstract Image

镍电催化二氧化碳还原制取乙醇
二氧化碳的电还原为生成合成燃料提供了一条可持续的途径。目前已开发出铜基催化剂来生产高附加值的 C2+ 醇;然而,由于对复杂的 C-C 偶联和反应途径的了解有限,阻碍了高效 CO2 转 C2+ 醇催化剂的开发。本文报告了一种从嵌段共聚物的微相分离中获得的无铜、高介孔 NiO 催化剂,该催化剂实现了二氧化碳对乙醇的选择性还原,在 -0.6 V 相对于 RHE 时,法拉第效率为 75.2%。致密的介孔为富含 CO2 和缺乏 H2O 的界面创造了有利的局部反应环境,抑制了氢的演化,最大限度地提高了 NiO 对 CO2 还原的催化活性。重要的是,C1 进料实验、原位光谱和理论计算一致表明,*CO2 和*COOH 的直接耦合是在 NiO 上形成 C-C 键的原因,随后*CO2-COOH 通过*COCOH 和*OC2H5 途径还原成乙醇在能量上非常容易。与铜上的 *CO 二聚化不同,NiO 上的非常规 C-C 耦合机制是由极化的 Ni2+-O2- 位点上的强 CO2 吸附引发的。这项工作不仅证明了一种高选择性的无铜镍基 CO2 到 C2+ 醇转化替代方法,还为 C-C 偶联合成 C2+ 提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信