Lithium-ion conducting seaweed and gum-based biopolymer electrolyte for supercapacitor applications

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2024-08-27 DOI:10.1007/s11581-024-05775-z
M. Nandhinilakshmi, K. Sundaramahalingam, D. Vanitha, P. Saranya, A. Shameem
{"title":"Lithium-ion conducting seaweed and gum-based biopolymer electrolyte for supercapacitor applications","authors":"M. Nandhinilakshmi, K. Sundaramahalingam, D. Vanitha, P. Saranya, A. Shameem","doi":"10.1007/s11581-024-05775-z","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion conducting solid polymer electrolytes are prepared by incorporating lithium triflate (LiCF<sub>3</sub>SO<sub>3</sub>) salt into a plasticized blend of Iota-carrageenan and acacia gum, using the solution casting method. The structural and molecular complexations of the resulting electrolytes are analyzed through X-ray diffraction and Fourier-transform infrared analysis. AC impedance analysis spectra demonstrate that the addition of 33 wt.% of LiCF<sub>3</sub>SO<sub>3</sub> salt into the polymer electrolyte blend (IATF50) results in higher ionic conductivity of 3.18 × 10<sup>−3</sup> S/cm, and a minimum activation energy of 0.03 eV. The highly conductive electrolyte follows the overlapping-large polaron tunnelling (OLPT) paradigm. The dielectric and modulus spectra further confirm the non-Debye nature of the electrolyte. From the transference number measurement, it is confirmed that the conductivity is mostly due to Li ions and the IATF50 sample is chosen to fabricate a symmetrical supercapacitor. Galvanostatic charge/discharge studies show the discharge characteristics with a duration of 30 s and a specific capacitance (<i>C</i><sub><i>s</i></sub>) value of 100 F/g.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11581-024-05775-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion conducting solid polymer electrolytes are prepared by incorporating lithium triflate (LiCF3SO3) salt into a plasticized blend of Iota-carrageenan and acacia gum, using the solution casting method. The structural and molecular complexations of the resulting electrolytes are analyzed through X-ray diffraction and Fourier-transform infrared analysis. AC impedance analysis spectra demonstrate that the addition of 33 wt.% of LiCF3SO3 salt into the polymer electrolyte blend (IATF50) results in higher ionic conductivity of 3.18 × 10−3 S/cm, and a minimum activation energy of 0.03 eV. The highly conductive electrolyte follows the overlapping-large polaron tunnelling (OLPT) paradigm. The dielectric and modulus spectra further confirm the non-Debye nature of the electrolyte. From the transference number measurement, it is confirmed that the conductivity is mostly due to Li ions and the IATF50 sample is chosen to fabricate a symmetrical supercapacitor. Galvanostatic charge/discharge studies show the discharge characteristics with a duration of 30 s and a specific capacitance (Cs) value of 100 F/g.

Abstract Image

用于超级电容器的锂离子导电海藻和胶基生物聚合物电解质
本研究采用溶液浇铸法,将三酸锂(LiCF3SO3)盐加入到 Iota-carrageenan 和刺槐胶的塑化混合物中,制备了锂离子导电固体聚合物电解质。通过 X 射线衍射和傅立叶变换红外分析,对所得电解质的结构和分子复合物进行了分析。交流阻抗分析光谱表明,在聚合物电解质混合物(IATF50)中添加 33 重量百分比的 LiCF3SO3 盐可使离子电导率达到 3.18 × 10-3 S/cm,最小活化能为 0.03 eV。高导电性电解质遵循重叠-大极子隧穿(OLPT)范式。介电和模量光谱进一步证实了电解质的非戴贝性质。通过测量转移数,可以确认导电性主要来自于锂离子,因此选择 IATF50 样品来制造对称的超级电容器。静电充放电研究表明,放电特性持续时间为 30 秒,比电容(Cs)值为 100 F/g。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信