Eco-friendly preparation of V2O5/g-C3N4 nanosheets as efficient high-performance supercapacitor electrode material

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL
Ionics Pub Date : 2024-09-06 DOI:10.1007/s11581-024-05815-8
P. Vijayakumar, N. Sethupathi, S. Manikandan, P. Mahalingam, P. Maadeswaran, K. A. Rameshkumar
{"title":"Eco-friendly preparation of V2O5/g-C3N4 nanosheets as efficient high-performance supercapacitor electrode material","authors":"P. Vijayakumar, N. Sethupathi, S. Manikandan, P. Mahalingam, P. Maadeswaran, K. A. Rameshkumar","doi":"10.1007/s11581-024-05815-8","DOIUrl":null,"url":null,"abstract":"<p>V<sub>2</sub>O<sub>5</sub>/g-C<sub>3</sub>N<sub>4</sub> composites including g-C<sub>3</sub>N<sub>4</sub> nanosheet carbon have been widely studied to solve challenges such as poor intrinsic electrical conductivity, substantial irreversibility, and exceptional stability. A time-saving hydrothermal autoclave synthesis method was used to fuse V<sub>2</sub>O<sub>5</sub>/g-C<sub>3</sub>N<sub>4</sub> composite strands. V<sub>2</sub>O<sub>5</sub>/g-C<sub>3</sub>N<sub>4</sub> composite is a hybrid nanoparticle with important properties for the electrode of a supercapacitor that has been studied and published. The phase structure, space group, and crystallite size of nanoparticles were determined using X-ray diffraction (XRD) peak examination. The resulting materials are analyzed using the Fourier transform infrared spectrometer (FTIR), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscope (HRTEM), Brunauer–Emmett–Teller (BET), and X-ray photoelectron spectroscopy (XPS). The average crystalline diameters of graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>), vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>), and V<sub>2</sub>O<sub>5</sub>/g-C<sub>3</sub>N<sub>4</sub> composites are 28 nm, 16 nm, and 12 nm, respectively. FESEM determines the distribution of V<sub>2</sub>O<sub>5</sub> throughout the g-C₃N₄ nanosheets. XPS detects the elements present in the composite, confirming the presence of V, O, C, and N. The V<sub>2</sub>O<sub>5</sub>/g-C<sub>3</sub>N<sub>4</sub> composite provides insights into the surface chemistry and probable interactions between V₂O₅ and g-C₃N₄. V<sub>2</sub>O<sub>5</sub>/g-C<sub>3</sub>N<sub>4</sub> nanoparticles have a specific capacitance of 286.54 F/g and are estimated at 2 A/g using the galvanostatic charge–discharge technique, which provides superior stability even after 3000 charge/discharge cycles. Their remarkable performance is due to the synergistic impact of g-C<sub>3</sub>N<sub>4</sub> and V<sub>2</sub>O<sub>5</sub>/g-C<sub>3</sub>N<sub>4</sub>. Such outstanding results may open up new possibilities for these electrode materials in high-energy–density storage devices. The composites also showed high cycle stability due to the peculiar structure of the V<sub>2</sub>O<sub>5</sub> and synergy with g-C<sub>3</sub>N<sub>4</sub>.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11581-024-05815-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

V2O5/g-C3N4 composites including g-C3N4 nanosheet carbon have been widely studied to solve challenges such as poor intrinsic electrical conductivity, substantial irreversibility, and exceptional stability. A time-saving hydrothermal autoclave synthesis method was used to fuse V2O5/g-C3N4 composite strands. V2O5/g-C3N4 composite is a hybrid nanoparticle with important properties for the electrode of a supercapacitor that has been studied and published. The phase structure, space group, and crystallite size of nanoparticles were determined using X-ray diffraction (XRD) peak examination. The resulting materials are analyzed using the Fourier transform infrared spectrometer (FTIR), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscope (HRTEM), Brunauer–Emmett–Teller (BET), and X-ray photoelectron spectroscopy (XPS). The average crystalline diameters of graphitic carbon nitride (g-C3N4), vanadium pentoxide (V2O5), and V2O5/g-C3N4 composites are 28 nm, 16 nm, and 12 nm, respectively. FESEM determines the distribution of V2O5 throughout the g-C₃N₄ nanosheets. XPS detects the elements present in the composite, confirming the presence of V, O, C, and N. The V2O5/g-C3N4 composite provides insights into the surface chemistry and probable interactions between V₂O₅ and g-C₃N₄. V2O5/g-C3N4 nanoparticles have a specific capacitance of 286.54 F/g and are estimated at 2 A/g using the galvanostatic charge–discharge technique, which provides superior stability even after 3000 charge/discharge cycles. Their remarkable performance is due to the synergistic impact of g-C3N4 and V2O5/g-C3N4. Such outstanding results may open up new possibilities for these electrode materials in high-energy–density storage devices. The composites also showed high cycle stability due to the peculiar structure of the V2O5 and synergy with g-C3N4.

Abstract Image

以生态友好方式制备作为高效高性能超级电容器电极材料的 V2O5/g-C3N4 纳米片
为了解决包括 g-C3N4 纳米片碳在内的 V2O5/g-C3N4 复合材料固有导电性差、不可逆性强和稳定性差等难题,人们对其进行了广泛的研究。我们采用了一种省时的水热高压釜合成法来熔合 V2O5/g-C3N4 复合材料股。V2O5/g-C3N4 复合材料是一种具有重要特性的混合纳米粒子,可用于超级电容器的电极,相关研究已发表。利用 X 射线衍射 (XRD) 峰检查确定了纳米粒子的相结构、空间群和晶粒大小。利用傅立叶变换红外光谱仪(FTIR)、场发射扫描电子显微镜(FESEM)、高分辨率透射电子显微镜(HRTEM)、布鲁瑙尔-艾美特-泰勒(BET)和 X 射线光电子能谱(XPS)对所得材料进行了分析。氮化石墨碳(g-C3N4)、五氧化二钒(V2O5)和 V2O5/g-C3N4 复合材料的平均结晶直径分别为 28 纳米、16 纳米和 12 纳米。FESEM 确定了 V2O5 在整个 g-C₃N₄ 纳米片中的分布。XPS 检测了复合材料中存在的元素,证实了 V、O、C 和 N 的存在。V2O5/g-C3N4 复合材料让人们深入了解了 V₂O₅ 和 g-C₃N₄ 之间的表面化学性质和可能的相互作用。V2O5/g-C3N4 纳米粒子的比电容为 286.54 F/g,使用电静态充放电技术估算的比电容为 2 A/g,即使在 3000 次充放电循环后仍具有出色的稳定性。其卓越的性能得益于 g-C3N4 和 V2O5/g-C3N4 的协同作用。这些出色的结果为这些电极材料在高能量密度存储设备中的应用开辟了新的可能性。由于 V2O5 的特殊结构以及与 g-C3N4 的协同作用,复合材料还表现出较高的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信