A low-cost and convenient route of fabricating GaN films with P-type mixed microcrystalline and amorphous structure deposited via Ga target of magnetron sputtering
IF 5.3 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xueqing Chen, Nan Li, Zerong Xing, Jiasheng Zu, Xianwei Meng, Zhuquan Zhou, Qian Li, Lifeng Tian, Yuntao Cui, Jing Liu
{"title":"A low-cost and convenient route of fabricating GaN films with P-type mixed microcrystalline and amorphous structure deposited via Ga target of magnetron sputtering","authors":"Xueqing Chen, Nan Li, Zerong Xing, Jiasheng Zu, Xianwei Meng, Zhuquan Zhou, Qian Li, Lifeng Tian, Yuntao Cui, Jing Liu","doi":"10.1063/5.0217625","DOIUrl":null,"url":null,"abstract":"GaN, a third-generation semiconductor, has gained widespread attention owing to its high temperature resistance, wide bandgap, and high critical breakdown electric fields. Magnetron sputtering has a broad potential in the field of low-cost growth of GaN on account of high efficiency, superior quality, and convenient operation. However, challenges caused from the pure Ga targets with a huge refrigeration system need to be resolved for wide practices. Here, a new and cost-effective Ga target for magnetron sputtering was fabricated by utilizing the wetting properties of CuGa2 and Ga. Mixed microcrystalline and amorphous GaN films were obtained via reactive magnetron sputtering employing the Ga target. The average deposition rate is about 1.68 nm/min, and the average roughness is ∼7.45 ± 0.26 nm under 100 W of sputtering power. In addition, the sputtered GaN films were found to be wide-bandgap and p-type semiconductors with high transmittance, as revealed by x-ray photoelectron spectroscopy and absorption spectra. The GaN films display a bandgap of ∼3.60 eV and a transmittance exceeding 88.5% in the visible range. Furthermore, field-effect transistors and metal–semiconductor–metal photodetectors have been fabricated using the obtained GaN films, demonstrating favorable response characteristics. The prospects of microcrystalline/amorphous GaN films in sensing, power devices, and flexible electronics were forecasted. Overall, a low-cost and pervasive route of target fabrication process expands the possibilities of using low melting point metals in magnetron sputtering.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"43 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0217625","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
GaN, a third-generation semiconductor, has gained widespread attention owing to its high temperature resistance, wide bandgap, and high critical breakdown electric fields. Magnetron sputtering has a broad potential in the field of low-cost growth of GaN on account of high efficiency, superior quality, and convenient operation. However, challenges caused from the pure Ga targets with a huge refrigeration system need to be resolved for wide practices. Here, a new and cost-effective Ga target for magnetron sputtering was fabricated by utilizing the wetting properties of CuGa2 and Ga. Mixed microcrystalline and amorphous GaN films were obtained via reactive magnetron sputtering employing the Ga target. The average deposition rate is about 1.68 nm/min, and the average roughness is ∼7.45 ± 0.26 nm under 100 W of sputtering power. In addition, the sputtered GaN films were found to be wide-bandgap and p-type semiconductors with high transmittance, as revealed by x-ray photoelectron spectroscopy and absorption spectra. The GaN films display a bandgap of ∼3.60 eV and a transmittance exceeding 88.5% in the visible range. Furthermore, field-effect transistors and metal–semiconductor–metal photodetectors have been fabricated using the obtained GaN films, demonstrating favorable response characteristics. The prospects of microcrystalline/amorphous GaN films in sensing, power devices, and flexible electronics were forecasted. Overall, a low-cost and pervasive route of target fabrication process expands the possibilities of using low melting point metals in magnetron sputtering.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.