Utilizing (Al, Ga)2O3/Ga2O3 superlattices to measure cation vacancy diffusion and vacancy-concentration-dependent diffusion of Al, Sn, and Fe in β-Ga2O3

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
APL Materials Pub Date : 2024-08-30 DOI:10.1063/5.0206398
Nathan D. Rock, Haobo Yang, Brian Eisner, Aviva Levin, Arkka Bhattacharyya, Sriram Krishnamoorthy, Praneeth Ranga, Michael A. Walker, Larry Wang, Ming Kit Cheng, Wei Zhao, Michael A. Scarpulla
{"title":"Utilizing (Al, Ga)2O3/Ga2O3 superlattices to measure cation vacancy diffusion and vacancy-concentration-dependent diffusion of Al, Sn, and Fe in β-Ga2O3","authors":"Nathan D. Rock, Haobo Yang, Brian Eisner, Aviva Levin, Arkka Bhattacharyya, Sriram Krishnamoorthy, Praneeth Ranga, Michael A. Walker, Larry Wang, Ming Kit Cheng, Wei Zhao, Michael A. Scarpulla","doi":"10.1063/5.0206398","DOIUrl":null,"url":null,"abstract":"Diffusion of native defects such as vacancies and their interactions with impurities are fundamental to semiconductor crystal growth, device processing, and design. However, the transient equilibration of native defects is difficult to directly measure. We used (AlxGa1−x)2O3/Ga2O3 superlattices (SLs) to detect and analyze transient diffusion of cation vacancies during annealing in O2 at 1000–1100 °C. Using a novel finite difference scheme for diffusion with time- and space-varying diffusion constants, we determined diffusion constants for Al, Fe, and cation vacancies, including the vacancy concentration dependence for Al. In the case of SLs grown on Sn-doped β-Ga2O3 (010) substrates, gradients observed in the extent of Al diffusion indicate a supersaturation of vacancies in the substrates that transiently diffuse through the SLs coupled strongly to Sn and thus slowed compared to undoped cases. In the case of SLs grown on (010) Fe-doped substrates, the Al diffusion is uniform through the SLs, indicating a depth-uniform concentration of vacancies. We find no evidence for the introduction of VGa from the free surface at rates sufficient to affect Al diffusion at at. % concentrations, establishing an upper bound on surface injection. In addition, we show that unintentional impurities in Sn-doped Ga2O3 such as Fe, Ni, Mn, Cu, and Li also diffuse toward the surface and accumulate. Many of these likely have fast interstitial diffusion modes capable of destabilizing devices, thus suggesting that impurities may require further reduction. This work provides a method to measure transients in diffusion-mediating native defects otherwise hidden in common processes such as ion implantation, etching, and film growth.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"171 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0206398","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion of native defects such as vacancies and their interactions with impurities are fundamental to semiconductor crystal growth, device processing, and design. However, the transient equilibration of native defects is difficult to directly measure. We used (AlxGa1−x)2O3/Ga2O3 superlattices (SLs) to detect and analyze transient diffusion of cation vacancies during annealing in O2 at 1000–1100 °C. Using a novel finite difference scheme for diffusion with time- and space-varying diffusion constants, we determined diffusion constants for Al, Fe, and cation vacancies, including the vacancy concentration dependence for Al. In the case of SLs grown on Sn-doped β-Ga2O3 (010) substrates, gradients observed in the extent of Al diffusion indicate a supersaturation of vacancies in the substrates that transiently diffuse through the SLs coupled strongly to Sn and thus slowed compared to undoped cases. In the case of SLs grown on (010) Fe-doped substrates, the Al diffusion is uniform through the SLs, indicating a depth-uniform concentration of vacancies. We find no evidence for the introduction of VGa from the free surface at rates sufficient to affect Al diffusion at at. % concentrations, establishing an upper bound on surface injection. In addition, we show that unintentional impurities in Sn-doped Ga2O3 such as Fe, Ni, Mn, Cu, and Li also diffuse toward the surface and accumulate. Many of these likely have fast interstitial diffusion modes capable of destabilizing devices, thus suggesting that impurities may require further reduction. This work provides a method to measure transients in diffusion-mediating native defects otherwise hidden in common processes such as ion implantation, etching, and film growth.
利用(Al, Ga)2O3/Ga2O3 超晶格测量阳离子空位扩散以及β-Ga2O3 中铝、锡和铁随空位浓度变化的扩散情况
空位等原生缺陷的扩散及其与杂质的相互作用是半导体晶体生长、器件加工和设计的基础。然而,原生缺陷的瞬态平衡很难直接测量。我们利用 (AlxGa1-x)2O3/Ga2O3 超晶格(SLs)来检测和分析阳离子空位在 1000-1100 °C的氧气退火过程中的瞬态扩散。我们采用一种新颖的有限差分扩散方案,利用时间和空间变化的扩散常数,确定了铝、铁和阳离子空位的扩散常数,包括铝的空位浓度依赖性。对于生长在掺杂锡的β-Ga2O3(010)基底上的二氧化硅,在铝扩散程度上观察到的梯度表明基底中的空位过饱和,这些空位通过二氧化硅瞬时扩散时与锡的耦合很强,因此与未掺杂的情况相比,扩散速度减慢。在掺杂 Fe 的 (010) 基底上生长的 SLs,铝在 SLs 中的扩散是均匀的,这表明空位的浓度在深度上是均匀的。我们没有发现任何证据表明,自由表面引入 VGa 的速率足以影响浓度为 % 时的铝扩散。%浓度时,没有证据表明 VGa 以足以影响铝扩散的速率从自由表面引入,从而确定了表面注入的上限。此外,我们还发现掺锡 Ga2O3 中的无意杂质(如铁、镍、锰、铜和锂)也会向表面扩散和累积。其中许多杂质可能具有快速的间隙扩散模式,能够破坏器件的稳定性,因此表明杂质可能需要进一步减少。这项工作提供了一种方法来测量扩散介导的原生缺陷的瞬态,否则这些缺陷就会隐藏在离子注入、蚀刻和薄膜生长等常见工艺中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信