Synergizing intrinsic symmetry breaking with spin–orbit torques for field-free perpendicular magnetic tunnel junction

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
APL Materials Pub Date : 2024-08-30 DOI:10.1063/5.0221776
Jing Zhou, Lisen Huang, Sherry Lee Koon Yap, Dennis Jing Xiong Lin, Bingjin Chen, Shaohai Chen, Seng Kai Wong, Jinjun Qiu, James Lourembam, Anjan Soumyanarayanan, Sze Ter Lim
{"title":"Synergizing intrinsic symmetry breaking with spin–orbit torques for field-free perpendicular magnetic tunnel junction","authors":"Jing Zhou, Lisen Huang, Sherry Lee Koon Yap, Dennis Jing Xiong Lin, Bingjin Chen, Shaohai Chen, Seng Kai Wong, Jinjun Qiu, James Lourembam, Anjan Soumyanarayanan, Sze Ter Lim","doi":"10.1063/5.0221776","DOIUrl":null,"url":null,"abstract":"Current-induced spin–orbit torque (SOT) facilitates the ultrafast electrical manipulation of magnetic tunnel junction (MTJ), which is a leading non-volatile technology for the microelectronic industry. The key bottleneck to the commercial application of SOT-MTJ is the absence of a practicable symmetry-breaking scheme to switch perpendicular magnetization without an external magnetic field. Here, we demonstrate the wafer-scale realization of internalized field-free switching in perpendicular SOT-MTJ using conventional materials and device structure. We utilize a dual-function tungsten (W) spacer, which generates sizable SOT while concomitantly breaking symmetry via interlayer exchange coupling (IEC). Tuning the W thickness enables field-free switching with two types of IEC. An optimized combination of SOT and IEC ensures competitive switching performance, with our device exhibiting excellent thermal stability, low switching current density, and fast operating speed. This work builds the long-sought bridge between SOT manipulation of magnetization and wafer-scale field-free perpendicular MTJ. It underscores the urgent need to incorporate perpendicular SOT-MTJ in integrated circuits for applications in logic, memory, and unconventional computing.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"27 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0221776","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Current-induced spin–orbit torque (SOT) facilitates the ultrafast electrical manipulation of magnetic tunnel junction (MTJ), which is a leading non-volatile technology for the microelectronic industry. The key bottleneck to the commercial application of SOT-MTJ is the absence of a practicable symmetry-breaking scheme to switch perpendicular magnetization without an external magnetic field. Here, we demonstrate the wafer-scale realization of internalized field-free switching in perpendicular SOT-MTJ using conventional materials and device structure. We utilize a dual-function tungsten (W) spacer, which generates sizable SOT while concomitantly breaking symmetry via interlayer exchange coupling (IEC). Tuning the W thickness enables field-free switching with two types of IEC. An optimized combination of SOT and IEC ensures competitive switching performance, with our device exhibiting excellent thermal stability, low switching current density, and fast operating speed. This work builds the long-sought bridge between SOT manipulation of magnetization and wafer-scale field-free perpendicular MTJ. It underscores the urgent need to incorporate perpendicular SOT-MTJ in integrated circuits for applications in logic, memory, and unconventional computing.
无磁场垂直磁隧道结的本征对称性破缺与自旋轨道力矩协同作用
电流诱导的自旋轨道力矩(SOT)促进了磁性隧道结(MTJ)的超快电气操控,而磁性隧道结是微电子行业的一项领先非易失性技术。SOT-MTJ 商业化应用的关键瓶颈在于缺乏一种可行的对称性破坏方案,无法在没有外部磁场的情况下切换垂直磁化。在这里,我们展示了利用传统材料和器件结构在晶圆级实现垂直 SOT-MTJ 内化无磁场开关的方法。我们利用双重功能的钨(W)间隔物,在产生可观的 SOT 的同时,通过层间交换耦合(IEC)打破对称性。调整钨的厚度可以实现两种 IEC 的无场切换。SOT 和 IEC 的优化组合确保了具有竞争力的开关性能,我们的器件具有出色的热稳定性、较低的开关电流密度和较快的工作速度。这项工作在 SOT 磁化操纵和晶圆级无磁场垂直 MTJ 之间架起了一座长期寻求的桥梁。它强调了将垂直 SOT-MTJ 集成到逻辑、存储器和非传统计算应用的集成电路中的迫切需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信