Nengjie Yang, Yuting Huang, Chen Dong, Chi Sun, Peipei Xi, Yuexiao Dai, Rui Zhao, Yunan Wang, Yujuan Zhu, Zhifeng Gu
{"title":"Nanozyme microspheres with structural color-coding labels for synergistic therapy of psoriasis","authors":"Nengjie Yang, Yuting Huang, Chen Dong, Chi Sun, Peipei Xi, Yuexiao Dai, Rui Zhao, Yunan Wang, Yujuan Zhu, Zhifeng Gu","doi":"10.1063/5.0229803","DOIUrl":null,"url":null,"abstract":"Psoriasis is an immune system-mediated skin disease identified by the appearance of erythematous as a central symptom. As a recurrent and chronic inflammatory disease, psoriasis is influenced by both genetic and environmental factors and is known to be with no effective cure. Considering a multifaceted etiology of psoriasis, synergistic therapy exhibits great benefits over monotherapy, which becomes common for the treatment of various diseases. Herein, we present the nanozyme microspheres with structural color-coding labels for synergistic therapy of psoriasis. In particular, microsphere hydrogel is fabricated by the edible hydroxypropyl cellulose (HPC), which can generate a photonic liquid crystalline mesophase under lyotropic conditions in solution. Through adjustment of hydrogel components, microspheres endow with different functions, including moisturizing (paraffin), cfDNA scavenging (chitosan), and anti-inflammation (cerium oxide nanozyme). To improve patient convenience, hydrogel drops with different properties are tailored with different vivid structural colors by exploiting the lyotropic behavior of HPC. Of particular note, both in vitro and in vivo experiments have demonstrated the significant therapeutic effects of the encoded structural color microspheres. Green moisturizing microspheres facilitate to relieve dry, flaky skin patches; blue cfDNA scavenging and red anti-inflammatory microspheres significantly reduce skin inflammation. More importantly, combination therapy with encoded microspheres exerted the synergistic effects, including the increased body weight, thicker epidermal layer, and reduced immune activation. Overall, this synergistic treatment offers a promising platform for personalized management of psoriasis and various inflammatory skin diseases.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0229803","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Psoriasis is an immune system-mediated skin disease identified by the appearance of erythematous as a central symptom. As a recurrent and chronic inflammatory disease, psoriasis is influenced by both genetic and environmental factors and is known to be with no effective cure. Considering a multifaceted etiology of psoriasis, synergistic therapy exhibits great benefits over monotherapy, which becomes common for the treatment of various diseases. Herein, we present the nanozyme microspheres with structural color-coding labels for synergistic therapy of psoriasis. In particular, microsphere hydrogel is fabricated by the edible hydroxypropyl cellulose (HPC), which can generate a photonic liquid crystalline mesophase under lyotropic conditions in solution. Through adjustment of hydrogel components, microspheres endow with different functions, including moisturizing (paraffin), cfDNA scavenging (chitosan), and anti-inflammation (cerium oxide nanozyme). To improve patient convenience, hydrogel drops with different properties are tailored with different vivid structural colors by exploiting the lyotropic behavior of HPC. Of particular note, both in vitro and in vivo experiments have demonstrated the significant therapeutic effects of the encoded structural color microspheres. Green moisturizing microspheres facilitate to relieve dry, flaky skin patches; blue cfDNA scavenging and red anti-inflammatory microspheres significantly reduce skin inflammation. More importantly, combination therapy with encoded microspheres exerted the synergistic effects, including the increased body weight, thicker epidermal layer, and reduced immune activation. Overall, this synergistic treatment offers a promising platform for personalized management of psoriasis and various inflammatory skin diseases.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.