{"title":"BHLHE41, a transcriptional repressor involved in physiological processes and tumor development","authors":"Caroline Bret, Fabienne Desmots-Loyer, Jérôme Moreaux, Thierry Fest","doi":"10.1007/s13402-024-00973-3","DOIUrl":null,"url":null,"abstract":"<p>BHLHE41 is a nuclear transcriptional repressor that belongs to the basic helix-loop-helix protein superfamily. <i>BHLHE41</i> expression tends to be restricted to specific tissues and is regulated by environmental cues and biological events. BHLHE41 homodimerizes or heterodimerizes with various partners, influencing its transcription factor function. BHLHE41 is involved in the regulation of many physiological processes implicated in tissue/organ homeostasis, such as myogenesis, adipogenesis, circadian rhythms and DNA repair. At cellular level, BHLHE41 is involved in the regulation of mesenchymal stem cell properties, tissue-specific macrophage functions and lymphoid lineage physiology. In several cancer types, BHLHE41 modulates the expression of different transcriptional programs influencing cell cycle control, apoptosis, invasiveness, epithelial to mesenchymal transition and hypoxia response in the tumor environment. Depending on the cancer cell type, BHLHE41 can act as a tumor suppressor or an oncogene, and could be a target for innovative therapies. This review summarizes the available knowledge on BHLHE41 structure, biological functions, regulation and potential partners, as well as its role in physiological processes, and its implication in major cancer steps.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":"12 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-024-00973-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
BHLHE41 is a nuclear transcriptional repressor that belongs to the basic helix-loop-helix protein superfamily. BHLHE41 expression tends to be restricted to specific tissues and is regulated by environmental cues and biological events. BHLHE41 homodimerizes or heterodimerizes with various partners, influencing its transcription factor function. BHLHE41 is involved in the regulation of many physiological processes implicated in tissue/organ homeostasis, such as myogenesis, adipogenesis, circadian rhythms and DNA repair. At cellular level, BHLHE41 is involved in the regulation of mesenchymal stem cell properties, tissue-specific macrophage functions and lymphoid lineage physiology. In several cancer types, BHLHE41 modulates the expression of different transcriptional programs influencing cell cycle control, apoptosis, invasiveness, epithelial to mesenchymal transition and hypoxia response in the tumor environment. Depending on the cancer cell type, BHLHE41 can act as a tumor suppressor or an oncogene, and could be a target for innovative therapies. This review summarizes the available knowledge on BHLHE41 structure, biological functions, regulation and potential partners, as well as its role in physiological processes, and its implication in major cancer steps.
Cellular OncologyBiochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
10.40
自引率
1.50%
发文量
0
审稿时长
16 weeks
期刊介绍:
The Official Journal of the International Society for Cellular Oncology
Focuses on translational research
Addresses the conversion of cell biology to clinical applications
Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions.
A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients.
In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.