Sena Maulana, Ika Putri Setiawan, Dyah Pusbanarum, Petar Antov, Apri Heri Iswanto, Lubos Kristak, Seng Hua Lee, Muhammad Adly Rahandi Lubis
{"title":"Adhesion and Cohesion Performance of Polyurethane Made of Bio-Polyol Derived from Modified Waste Cooking Oil for Exterior Grade Plywood","authors":"Sena Maulana, Ika Putri Setiawan, Dyah Pusbanarum, Petar Antov, Apri Heri Iswanto, Lubos Kristak, Seng Hua Lee, Muhammad Adly Rahandi Lubis","doi":"10.1002/mame.202400225","DOIUrl":null,"url":null,"abstract":"<p>This study explored the feasibility of Waste Cooking Oil (WCO)-based Bio-Polyurethane (Bio-PU) as an eco-friendly alternative to petroleum-derived polyols in plywood adhesives. The objective is to evaluate the impact of varied WCO concentrations and methylene diphenyl diisocyanate (MDI) levels on Bio-PU and plywood performance. The Bio-PU's characteristics, rheology, and functional groups are studied. Plywood made from three layers of 100 mm x 100 mm × 2 mm rubberwood (<i>Hevea brasiliensis</i>) veneer is bonded with Bio-PU using a dual spread approach at 180 g.m<sup>−2</sup>, hot pressed at 120 °C and 1 MPa for 4 min. The laboratory-fabricated plywood is tested for physical, mechanical, and adhesive properties. Results showed that Bio-PU exhibited unique adhesive characteristics, with excellent adhesive strength, despite a slight decrease with higher WCO concentrations. WCO insertion do not compromise delamination resistance. FTIR analysis confirmed successful polyurethane chain synthesis. This research highlighted the potential of WCO-based Bio-PU's as a sustainable, high-performance plywood adhesive.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400225","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the feasibility of Waste Cooking Oil (WCO)-based Bio-Polyurethane (Bio-PU) as an eco-friendly alternative to petroleum-derived polyols in plywood adhesives. The objective is to evaluate the impact of varied WCO concentrations and methylene diphenyl diisocyanate (MDI) levels on Bio-PU and plywood performance. The Bio-PU's characteristics, rheology, and functional groups are studied. Plywood made from three layers of 100 mm x 100 mm × 2 mm rubberwood (Hevea brasiliensis) veneer is bonded with Bio-PU using a dual spread approach at 180 g.m−2, hot pressed at 120 °C and 1 MPa for 4 min. The laboratory-fabricated plywood is tested for physical, mechanical, and adhesive properties. Results showed that Bio-PU exhibited unique adhesive characteristics, with excellent adhesive strength, despite a slight decrease with higher WCO concentrations. WCO insertion do not compromise delamination resistance. FTIR analysis confirmed successful polyurethane chain synthesis. This research highlighted the potential of WCO-based Bio-PU's as a sustainable, high-performance plywood adhesive.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)