Evaluation of Burn Wound Healing Efficacy and Biocompatibility of Centella asiatica Mediated Synthesised AgNPs Loaded Hybrid Nanofiber Scaffold: In Vitro and In Vivo Studies
Ogün Bozkaya, Esra Bozkaya, Hüsamettin Ekici, Mehmet Eray Alçığır, Yaşar Şahin, Nebahat Aytuna Çerçi, Siyami Karahan, Mustafa Yiğitoğlu, İbrahim Vargel
{"title":"Evaluation of Burn Wound Healing Efficacy and Biocompatibility of Centella asiatica Mediated Synthesised AgNPs Loaded Hybrid Nanofiber Scaffold: In Vitro and In Vivo Studies","authors":"Ogün Bozkaya, Esra Bozkaya, Hüsamettin Ekici, Mehmet Eray Alçığır, Yaşar Şahin, Nebahat Aytuna Çerçi, Siyami Karahan, Mustafa Yiğitoğlu, İbrahim Vargel","doi":"10.1002/mame.202400186","DOIUrl":null,"url":null,"abstract":"The aim of this study is to evaluate the cell responses, potential skin reactions during the treatment process and burn wound healing efficacy of electrospun polycaprolactone/polyethylene oxide (PCL/PEO) nanofibers (NFs) containing <jats:italic>Centella asiatica</jats:italic> mediated synthesized silver nanoparticles (CA‐AgNPs) by in vitro and in vivo studies. Apoptosis‐necrosis, genotoxicity, hemolysis, and cell attachment studies are carried out within the scope of in vitro tests, and irritation, sensitivity, and burn wound studies are carried out within the scope of in vivo tests. The apoptotic index value of CA‐AgNPs‐[PCL/PEO] NFs material on L929 fibroblast cells is determined as 5.0 ± 1.0% at the highest concentration and the necrotic index value is 5.0 ± 0.3%. Micronucleus rates (%) of NFs treated with CHO (Chinese Hamster Ovary) cells are not at genotoxic level. The hemolytic index value of NFs dressing is determined as 0.23 ± 0.03%, The primary irritation index (PII) value of NFs wound dressing is calculated as 0.36 by irritation tests. In addition, the potential sensitization reaction of NFs extract on guinea pigs is evaluated and the sensitization score is determined as 0.9. The healing efficacy of NFs material on second‐degree burn wounds compared to a commercial product is supported by pathomorphological findings.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/mame.202400186","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study is to evaluate the cell responses, potential skin reactions during the treatment process and burn wound healing efficacy of electrospun polycaprolactone/polyethylene oxide (PCL/PEO) nanofibers (NFs) containing Centella asiatica mediated synthesized silver nanoparticles (CA‐AgNPs) by in vitro and in vivo studies. Apoptosis‐necrosis, genotoxicity, hemolysis, and cell attachment studies are carried out within the scope of in vitro tests, and irritation, sensitivity, and burn wound studies are carried out within the scope of in vivo tests. The apoptotic index value of CA‐AgNPs‐[PCL/PEO] NFs material on L929 fibroblast cells is determined as 5.0 ± 1.0% at the highest concentration and the necrotic index value is 5.0 ± 0.3%. Micronucleus rates (%) of NFs treated with CHO (Chinese Hamster Ovary) cells are not at genotoxic level. The hemolytic index value of NFs dressing is determined as 0.23 ± 0.03%, The primary irritation index (PII) value of NFs wound dressing is calculated as 0.36 by irritation tests. In addition, the potential sensitization reaction of NFs extract on guinea pigs is evaluated and the sensitization score is determined as 0.9. The healing efficacy of NFs material on second‐degree burn wounds compared to a commercial product is supported by pathomorphological findings.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.