Chao Wang, Wen-Duo Lu, Jiao Wang, Shunai Che, An-Hui Lu, Lu Han
{"title":"Synthesis of ordered mesoporous crystalline boron phosphate scaffold with double diamond surface structure","authors":"Chao Wang, Wen-Duo Lu, Jiao Wang, Shunai Che, An-Hui Lu, Lu Han","doi":"10.1007/s11426-024-2221-8","DOIUrl":null,"url":null,"abstract":"<p>Ordered mesoporous materials have received great attention due to their well-defined pore structures and potential applications in catalysis, adsorption, separation, drug delivery, etc. Although various compositions of mesoporous solids have been successfully prepared, the preparation of crystalline non-metallic oxyacid salts with ordered mesoporosity remains a major challenge. Herein, we report the synthesis of a mesoporous solid acid crystalline boron phosphate (BPO<sub>4</sub>) catalyst with a bicontinuous shifted double diamond (SDD) hyperbolic surface structure. The BPO<sub>4</sub> scaffold was obtained by synergistic self-assembly in a mixed solvent of water and tetrahydrofuran using the diblock copolymer poly(ethylene oxide)-<i>block</i>-polystyrene as template and phosphoric acid and orthoboric acid as inorganic sources. The structure consists of two sets of diamond networks adjacent to each other with a mesostructural scale tetragonal symmetry (space group <i>I</i>4<sub>1</sub>/<i>amd</i>) with unit cell parameters of <i>a</i> = 80 nm and <i>c</i> = 113 nm, which affords the scaffold a specific surface area of 44 m<sup>2</sup>/g. As a solid acid catalytic material, the SDD BPO<sub>4</sub> scaffold exhibited excellent catalytic activity at room temperature with a conversion of furfural to 2-(dimethoxymethyl) furan over 70% and can be reused after recovery without serious loss of activity. In the propane oxidative dehydrogenation reaction, SDD BPO<sub>4</sub> demonstrated high olefin productivity and selectivity while maintaining high reaction rate. This study provides ideas for the preparation of ordered mesoporous crystalline catalytic materials and demonstrates their potential for practical applications.</p>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"11 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s11426-024-2221-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ordered mesoporous materials have received great attention due to their well-defined pore structures and potential applications in catalysis, adsorption, separation, drug delivery, etc. Although various compositions of mesoporous solids have been successfully prepared, the preparation of crystalline non-metallic oxyacid salts with ordered mesoporosity remains a major challenge. Herein, we report the synthesis of a mesoporous solid acid crystalline boron phosphate (BPO4) catalyst with a bicontinuous shifted double diamond (SDD) hyperbolic surface structure. The BPO4 scaffold was obtained by synergistic self-assembly in a mixed solvent of water and tetrahydrofuran using the diblock copolymer poly(ethylene oxide)-block-polystyrene as template and phosphoric acid and orthoboric acid as inorganic sources. The structure consists of two sets of diamond networks adjacent to each other with a mesostructural scale tetragonal symmetry (space group I41/amd) with unit cell parameters of a = 80 nm and c = 113 nm, which affords the scaffold a specific surface area of 44 m2/g. As a solid acid catalytic material, the SDD BPO4 scaffold exhibited excellent catalytic activity at room temperature with a conversion of furfural to 2-(dimethoxymethyl) furan over 70% and can be reused after recovery without serious loss of activity. In the propane oxidative dehydrogenation reaction, SDD BPO4 demonstrated high olefin productivity and selectivity while maintaining high reaction rate. This study provides ideas for the preparation of ordered mesoporous crystalline catalytic materials and demonstrates their potential for practical applications.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.