{"title":"The secret of the magic gourd(I): biomass from various organizations of ourds as a sustainable source for high-performance supercapacitors","authors":"Shaoqing Zhang, Xuchun Wang, Tianming Lv, Baixue Dong, Jiqi Zheng, Yang Mu, Miao Cui, Ting Zhang, Changgong Meng","doi":"10.1007/s11426-024-2233-7","DOIUrl":null,"url":null,"abstract":"<p>The classic cartoon “Calabash Brothers” describes a story of seven brothers born from a magic gourd uniting to defeat powerful enemies. In order to explore the secret of the magic gourd, several transition metals were used to synthesize metal silicates (C-MSi) by planted gourd leaves (GLs) and then the C-MSi materials were used to fabricate supercapacitor electrodes and devices with superior electrochemical performance. By integrating theoretical calculations and experimental results, the supercapacitor electrodes and devices obtained from the combination of transition metals with amorphous carbon exhibit superior electrochemical performance. In detail, in the three-electrode system, the NaOH etched materials (C-MSi) exhibited better electrochemical performance (for instance, as for C-CdSi, 607 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup> and the capacitance retention of 98.2% after 10,000 cycles) than the unetched ones (i-C-MSi). Hybrid supercapacitor (HSC) devices also achieve very excellent electrochemical properties. Take C-CdSi//AC as an example, the areal specific capacitance with 691 mF cm<sup>−2</sup> at 2 mA cm<sup>−2</sup>, the energy density with 5.04 Wh m<sup>−2</sup> at the power density of 22.2 W m<sup>−2</sup> and the cycle stability with 87.3% after 6,000 cycles. This approach is very versatile and was also applied to produce many hierarchically structured metal-silicate materials of other biomass precursors, including roots, vines, flowers, fruits and seeds of the planted gourds. Thus, it is a potential way to prepare transition metal silicates using biomaterials for the enhancement of electrochemical performance and improvement of energy storage and conversion. Also, this paper preliminarily reveals the secret of the magic gourd.</p>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"5 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s11426-024-2233-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The classic cartoon “Calabash Brothers” describes a story of seven brothers born from a magic gourd uniting to defeat powerful enemies. In order to explore the secret of the magic gourd, several transition metals were used to synthesize metal silicates (C-MSi) by planted gourd leaves (GLs) and then the C-MSi materials were used to fabricate supercapacitor electrodes and devices with superior electrochemical performance. By integrating theoretical calculations and experimental results, the supercapacitor electrodes and devices obtained from the combination of transition metals with amorphous carbon exhibit superior electrochemical performance. In detail, in the three-electrode system, the NaOH etched materials (C-MSi) exhibited better electrochemical performance (for instance, as for C-CdSi, 607 F g−1 at 0.5 A g−1 and the capacitance retention of 98.2% after 10,000 cycles) than the unetched ones (i-C-MSi). Hybrid supercapacitor (HSC) devices also achieve very excellent electrochemical properties. Take C-CdSi//AC as an example, the areal specific capacitance with 691 mF cm−2 at 2 mA cm−2, the energy density with 5.04 Wh m−2 at the power density of 22.2 W m−2 and the cycle stability with 87.3% after 6,000 cycles. This approach is very versatile and was also applied to produce many hierarchically structured metal-silicate materials of other biomass precursors, including roots, vines, flowers, fruits and seeds of the planted gourds. Thus, it is a potential way to prepare transition metal silicates using biomaterials for the enhancement of electrochemical performance and improvement of energy storage and conversion. Also, this paper preliminarily reveals the secret of the magic gourd.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.