{"title":"Electrocatalysis for sustainable nitrogen management: materials innovation for sensing, removal and upcycling technologies","authors":"Mei Yi, Hongmei Li, Minghao Xie, Panpan Li, Zhaoyu Jin, Guihua Yu","doi":"10.1007/s11426-024-2286-7","DOIUrl":null,"url":null,"abstract":"<p>The global nitrogen cycle holds immense importance due to its crucial role in supporting life, supplying vital nutrients for plant growth, preserving environmental balance, and enabling the proper functioning of ecosystems. However, human activities frequently disrupt this cycle, leading to the accumulation of nitrates and nitrites in water bodies. This accumulation causes environmental pollution and health risks. Traditional methods for treating nitrogen pollution, including biological, physical, and chemical approaches, have inherent limitations. In recent years, electrocatalysis has emerged as a promising and sustainable approach for nitrogen management. This technology offers superior efficiency, high selectivity, and environmental friendliness. It not only enables accurate detection of nitrogen pollutants in the environment but also facilitates their conversion into harmless nitrogen gas. Moreover, recent advancements have focused on the upcycling of nitrogen pollutants into valuable compounds, such as ammonia and urea. In this comprehensive review, we showcase the applications of electrocatalysis in sustainable nitrogen management. Specifically, we highlight its use in the sensing, removal, and upcycling of major nitrogen pollutants, including nitrate (NO<sub>3</sub><sup>−</sup>), nitrite (NO<sub>2</sub><sup>−</sup>), and nitric oxide (NO). We discuss the use of catalysts, such as Pd alloys, Cu-based, and Fe-based materials, in electrochemical sensing and catalysis. Additionally, we explore recent advancements in the conversion of nitrogen pollutants into valuable compounds like ammonia and urea. The review also addresses current challenges and future opportunities in the field, including innovations in sensor and catalyst design, as well as large-scale treatment strategies. We anticipate that these perspectives will provide profound insights for effective nitrogen pollution control and sustainable utilization of nitrogen resources.</p>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"11 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s11426-024-2286-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The global nitrogen cycle holds immense importance due to its crucial role in supporting life, supplying vital nutrients for plant growth, preserving environmental balance, and enabling the proper functioning of ecosystems. However, human activities frequently disrupt this cycle, leading to the accumulation of nitrates and nitrites in water bodies. This accumulation causes environmental pollution and health risks. Traditional methods for treating nitrogen pollution, including biological, physical, and chemical approaches, have inherent limitations. In recent years, electrocatalysis has emerged as a promising and sustainable approach for nitrogen management. This technology offers superior efficiency, high selectivity, and environmental friendliness. It not only enables accurate detection of nitrogen pollutants in the environment but also facilitates their conversion into harmless nitrogen gas. Moreover, recent advancements have focused on the upcycling of nitrogen pollutants into valuable compounds, such as ammonia and urea. In this comprehensive review, we showcase the applications of electrocatalysis in sustainable nitrogen management. Specifically, we highlight its use in the sensing, removal, and upcycling of major nitrogen pollutants, including nitrate (NO3−), nitrite (NO2−), and nitric oxide (NO). We discuss the use of catalysts, such as Pd alloys, Cu-based, and Fe-based materials, in electrochemical sensing and catalysis. Additionally, we explore recent advancements in the conversion of nitrogen pollutants into valuable compounds like ammonia and urea. The review also addresses current challenges and future opportunities in the field, including innovations in sensor and catalyst design, as well as large-scale treatment strategies. We anticipate that these perspectives will provide profound insights for effective nitrogen pollution control and sustainable utilization of nitrogen resources.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.