{"title":"On the 𝑝-rank of curves","authors":"Sadik Terzİ","doi":"10.1090/proc/16841","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the computations of the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rank of curves in two different setups. We first work with complete intersection varieties in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper P Superscript n Baseline for n greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"bold\">P</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:mtext> for </mml:mtext> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbf {P}^n \\text { for } n\\ge 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and compute explicitly the action of Frobenius on the top cohomology group. In case of curves and surfaces, this information suffices to determine if the variety is ordinary. Next, we consider curves on more general surfaces with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p Subscript g Baseline left-parenthesis upper S right-parenthesis equals 0 equals q left-parenthesis upper S right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>=</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p_g(S) = 0 = q(S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such as Hirzebruch surfaces and determine <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-rank of curves on Hirzebruch surfaces.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"54 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16841","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we are concerned with the computations of the pp-rank of curves in two different setups. We first work with complete intersection varieties in Pn for n≥2\mathbf {P}^n \text { for } n\ge 2 and compute explicitly the action of Frobenius on the top cohomology group. In case of curves and surfaces, this information suffices to determine if the variety is ordinary. Next, we consider curves on more general surfaces with pg(S)=0=q(S)p_g(S) = 0 = q(S) such as Hirzebruch surfaces and determine pp-rank of curves on Hirzebruch surfaces.
在本文中,我们关注两种不同情况下曲线 p p -rank 的计算。我们首先处理 n ≥ 2 \mathbf {P}^n \text { for } n\ge 2 的 P n 中的完全交集品种,并明确计算 Frobenius 对顶同调群的作用。在曲线和曲面的情况下,这些信息足以确定该变化是否普通。接下来,我们考虑更一般的曲面上的曲线,即 p g ( S ) = 0 = q ( S ) p_g(S) = 0 = q(S),如希尔泽布鲁赫曲面,并确定希尔泽布鲁赫曲面上曲线的 p p -rank。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.