{"title":"Non-realizability of some big mapping class groups","authors":"Lei Chen, Yan Mary He","doi":"10.1090/proc/16860","DOIUrl":null,"url":null,"abstract":"<p>In this note, we prove that the compactly supported mapping class group of a surface containing a genus <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> subsurface has no realization as a subgroup of the homeomorphism group. We also prove that for certain surfaces with order <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"6\"> <mml:semantics> <mml:mn>6</mml:mn> <mml:annotation encoding=\"application/x-tex\">6</mml:annotation> </mml:semantics> </mml:math> </inline-formula> symmetries, their mapping class groups have no realization as a subgroup of the homeomorphism group. Examples of such surfaces include the plane minus a Cantor set and the sphere minus a Cantor set.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"11 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16860","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this note, we prove that the compactly supported mapping class group of a surface containing a genus 33 subsurface has no realization as a subgroup of the homeomorphism group. We also prove that for certain surfaces with order 66 symmetries, their mapping class groups have no realization as a subgroup of the homeomorphism group. Examples of such surfaces include the plane minus a Cantor set and the sphere minus a Cantor set.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.