{"title":"Distinctive acidity in citrus fruit is linked to loss of proanthocyanidin biosynthesis","authors":"","doi":"10.1016/j.isci.2024.110923","DOIUrl":null,"url":null,"abstract":"<div><div>The distinctive acidity of citrus fruit is determined by a regulatory complex of MYB and bHLH transcription factors together with a WDR protein (MBW complex) which operates in the unique juice vesicles of the fruit. We describe a mutation affecting the MYB protein, named Nicole, in sweet orange and identify its target genes that determine hyperacidification, specifically. We propose that the acidity, typical of citrus fruits, was the result of a loss of the ability of Nicole to activate the gene encoding anthocyanidin reductase, an enzyme essential for the synthesis of proanthocyanidins, which are absent in citrus fruit.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224021485","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The distinctive acidity of citrus fruit is determined by a regulatory complex of MYB and bHLH transcription factors together with a WDR protein (MBW complex) which operates in the unique juice vesicles of the fruit. We describe a mutation affecting the MYB protein, named Nicole, in sweet orange and identify its target genes that determine hyperacidification, specifically. We propose that the acidity, typical of citrus fruits, was the result of a loss of the ability of Nicole to activate the gene encoding anthocyanidin reductase, an enzyme essential for the synthesis of proanthocyanidins, which are absent in citrus fruit.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.