Segmentation tracking and clustering system enables accurate multi-animal tracking of social behaviors

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Cheng Tang, Yang Zhou, Shuaizhu Zhao, Mingshu Xie, Ruizhe Zhang, Xiaoyan Long, Lingqiang Zhu, Youming Lu, Guangzhi Ma, Hao Li
{"title":"Segmentation tracking and clustering system enables accurate multi-animal tracking of social behaviors","authors":"Cheng Tang, Yang Zhou, Shuaizhu Zhao, Mingshu Xie, Ruizhe Zhang, Xiaoyan Long, Lingqiang Zhu, Youming Lu, Guangzhi Ma, Hao Li","doi":"10.1016/j.patter.2024.101057","DOIUrl":null,"url":null,"abstract":"<p>Accurate analysis of social behaviors in animals is hindered by methodological challenges. Here, we develop a segmentation tracking and clustering system (STCS) to address two major challenges in computational neuroethology: reliable multi-animal tracking and pose estimation under complex interaction conditions and providing interpretable insights into social differences guided by genotype information. We established a comprehensive, long-term, multi-animal-tracking dataset across various experimental settings. Benchmarking STCS against state-of-the-art tracking algorithms, we demonstrated its superior efficacy in analyzing behavioral experiments and establishing a robust tracking baseline. By analyzing the behavior of mice with autism spectrum disorder (ASD) using a novel weakly supervised clustering method under both solitary and social conditions, STCS reveals potential links between social stress and motor impairments. Benefiting from its modular and web-based design, STCS allows researchers to easily integrate the latest computer vision methods, enabling comprehensive behavior analysis services over the Internet, even from a single laptop.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"42 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate analysis of social behaviors in animals is hindered by methodological challenges. Here, we develop a segmentation tracking and clustering system (STCS) to address two major challenges in computational neuroethology: reliable multi-animal tracking and pose estimation under complex interaction conditions and providing interpretable insights into social differences guided by genotype information. We established a comprehensive, long-term, multi-animal-tracking dataset across various experimental settings. Benchmarking STCS against state-of-the-art tracking algorithms, we demonstrated its superior efficacy in analyzing behavioral experiments and establishing a robust tracking baseline. By analyzing the behavior of mice with autism spectrum disorder (ASD) using a novel weakly supervised clustering method under both solitary and social conditions, STCS reveals potential links between social stress and motor impairments. Benefiting from its modular and web-based design, STCS allows researchers to easily integrate the latest computer vision methods, enabling comprehensive behavior analysis services over the Internet, even from a single laptop.

分段跟踪和聚类系统可对多只动物的社会行为进行精确跟踪
对动物社会行为的精确分析受到方法学挑战的阻碍。在这里,我们开发了一个分段跟踪和聚类系统(STCS),以解决计算神经伦理学中的两大难题:在复杂的交互条件下进行可靠的多动物跟踪和姿势估计,以及在基因型信息的指导下对社会差异提供可解释的见解。我们建立了一个跨越各种实验环境的全面、长期、多动物追踪数据集。通过将 STCS 与最先进的跟踪算法进行对比,我们证明了它在分析行为实验和建立稳健跟踪基线方面的卓越功效。通过使用一种新型弱监督聚类方法分析患有自闭症谱系障碍(ASD)的小鼠在独居和社交条件下的行为,STCS揭示了社交压力与运动障碍之间的潜在联系。得益于模块化和基于网络的设计,STCS 允许研究人员轻松集成最新的计算机视觉方法,通过互联网提供全面的行为分析服务,甚至只需一台笔记本电脑即可实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信