{"title":"Neuro‐fuzzy‐based cluster formation scheme for energy‐efficient data routing in IOT‐enabled WSN","authors":"Sakthi Shunmuga Sundaram Paulraj, Vijayan Kannabiran","doi":"10.1002/dac.5984","DOIUrl":null,"url":null,"abstract":"SummaryInternet of things–enabled wireless sensor networks face challenges like inflexibility, poor scalability, suboptimal cluster head selection, and energy inefficiencies. This is due to the faster data transmission rates between cluster nodes during data packet routing. This creates unnecessary energy consumption burdens for those actively transmitting nodes. Conceptually, an effective cluster formation phase supports better data routing mechanisms, while sustaining the energy efficiency of individual nodes. This paper proposes a Neuro‐Fuzzy based Cluster Formation (NFCF) scheme to facilitate adaptive and energy‐efficient cluster topologies. NFCF utilizes fuzzy logic and neural networks to identify optimal super nodes for flexible cluster formations. This approach enables configurable cluster sizes along with inclusion/exclusion criteria for member nodes based on energy thresholds. Parameters evaluated for node selection include the degree of super node, expected energy per cluster, energy variance, and residual energy. Nodes not meeting the thresholds are excluded. The neural network updates fuzzy rules to guide optimal clustering decisions based on anticipated energy dynamics under different conditions. The performance of the proposed NFCF scheme is evaluated based on objective function changes related to data transmission, individual node energy variation, energy variance before and after transmissions, and averaged end‐to‐end delay across transmission cycles. Results are compared against genetic fuzzy clustering, fuzzy energy‐aware clustering, fuzzy‐based distributed clustering, fuzzy logic‐based multi‐hop clustering, and fuzzy weighted k‐means clustering.","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"192 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/dac.5984","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
SummaryInternet of things–enabled wireless sensor networks face challenges like inflexibility, poor scalability, suboptimal cluster head selection, and energy inefficiencies. This is due to the faster data transmission rates between cluster nodes during data packet routing. This creates unnecessary energy consumption burdens for those actively transmitting nodes. Conceptually, an effective cluster formation phase supports better data routing mechanisms, while sustaining the energy efficiency of individual nodes. This paper proposes a Neuro‐Fuzzy based Cluster Formation (NFCF) scheme to facilitate adaptive and energy‐efficient cluster topologies. NFCF utilizes fuzzy logic and neural networks to identify optimal super nodes for flexible cluster formations. This approach enables configurable cluster sizes along with inclusion/exclusion criteria for member nodes based on energy thresholds. Parameters evaluated for node selection include the degree of super node, expected energy per cluster, energy variance, and residual energy. Nodes not meeting the thresholds are excluded. The neural network updates fuzzy rules to guide optimal clustering decisions based on anticipated energy dynamics under different conditions. The performance of the proposed NFCF scheme is evaluated based on objective function changes related to data transmission, individual node energy variation, energy variance before and after transmissions, and averaged end‐to‐end delay across transmission cycles. Results are compared against genetic fuzzy clustering, fuzzy energy‐aware clustering, fuzzy‐based distributed clustering, fuzzy logic‐based multi‐hop clustering, and fuzzy weighted k‐means clustering.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.