{"title":"Intelligent botnet detection in IoT networks using parallel CNN-LSTM fusion","authors":"Rongrong Jiang, Zhengqiu Weng, Lili Shi, Erxuan Weng, Hongmei Li, Weiqiang Wang, Tiantian Zhu, Wuzhao Li","doi":"10.1002/cpe.8258","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the development of the Internet of Things (IoT), the number of terminal devices is rapidly growing and at the same time, their security is facing serious challenges. For the industrial control system, there are challenges in detecting and preventing botnet. Traditional detection methods focus on capturing and reverse analyzing the botnet programs first and then parsing the extracted features from the malicious code or attacks. However, their accuracy is very low and their latency is relatively high. Moreover, they sometimes even cannot recognize the unknown botnets. The machine learning based detection methods rely on manual feature engineering and have a weak generalization. The deep learning-based methods mostly rely on the system log, which does not take into account the multisource information such as traffic. To address the above issues, from the perspective of the botnet features, this paper proposes an intelligent detection method over parallel CNN-LSTM, integrating the spatial and temporal features to identify botnets. Experimental demonstrate that the accuracy, recall, and <i>F</i>1-score of our proposed method achieve up to over 98%, and the precision, 97.8%, is not the highest but reasonable. It reveals compared with the existing start-of-the-art methods, our proposed method outperforms in the botnet detection. Our methodology's strength lies in its ability to harness the multifaceted information present in IoT traffic, offering a more nuanced and comprehensive analysis. The parallel CNN-LSTM architecture ensures that spatial and temporal data are processed concurrently, preserving the integrity of the information and enabling a more robust detection mechanism. The result is a detection system that not only performs exceptionally well in a controlled environment but also holds promise for real-world application, where the rapid and accurate identification of botnets is paramount.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 24","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8258","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of the Internet of Things (IoT), the number of terminal devices is rapidly growing and at the same time, their security is facing serious challenges. For the industrial control system, there are challenges in detecting and preventing botnet. Traditional detection methods focus on capturing and reverse analyzing the botnet programs first and then parsing the extracted features from the malicious code or attacks. However, their accuracy is very low and their latency is relatively high. Moreover, they sometimes even cannot recognize the unknown botnets. The machine learning based detection methods rely on manual feature engineering and have a weak generalization. The deep learning-based methods mostly rely on the system log, which does not take into account the multisource information such as traffic. To address the above issues, from the perspective of the botnet features, this paper proposes an intelligent detection method over parallel CNN-LSTM, integrating the spatial and temporal features to identify botnets. Experimental demonstrate that the accuracy, recall, and F1-score of our proposed method achieve up to over 98%, and the precision, 97.8%, is not the highest but reasonable. It reveals compared with the existing start-of-the-art methods, our proposed method outperforms in the botnet detection. Our methodology's strength lies in its ability to harness the multifaceted information present in IoT traffic, offering a more nuanced and comprehensive analysis. The parallel CNN-LSTM architecture ensures that spatial and temporal data are processed concurrently, preserving the integrity of the information and enabling a more robust detection mechanism. The result is a detection system that not only performs exceptionally well in a controlled environment but also holds promise for real-world application, where the rapid and accurate identification of botnets is paramount.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.