Emmanuel Antwi-Boasiako, Shijie Zhou, Yongjian Liao, Isaac Amankona Obiri, Eric Kuada, Ebenezer Kwaku Danso, Edward Mensah Acheampong
{"title":"Enhanced multi-key privacy-preserving distributed deep learning protocol with application to diabetic retinopathy diagnosis","authors":"Emmanuel Antwi-Boasiako, Shijie Zhou, Yongjian Liao, Isaac Amankona Obiri, Eric Kuada, Ebenezer Kwaku Danso, Edward Mensah Acheampong","doi":"10.1002/cpe.8263","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this work, privacy-preserving distributed deep learning (PPDDL) is re-visited with a specific application to diagnosing long-term illness like diabetic retinopathy. In order to protect the privacy of participants datasets, a multi-key PPDDL solution is proposed which is robust against collusion attacks and is also post-quantum robust. Additionally, the PPDDL solution provides robust network security in terms of integrity of transmitted ciphertexts and keys, forward secrecy, and prevention of man-in-the-middle attacks and is extensively verified using Verifpal. Proposed solution is evaluated on retina image datasets to detect diabetic retinopathy, with deep learning accuracy results of 96.30%, 96.21% and 96.20% for DDL, DDL + SINGLE and DDL + MULTI scenarios respectively. Results from our simulation indicate that accuracy of the PPDDL is maintained while protecting the privacy of the datasets of participants. Our proposed solution is also efficient in terms of the communication and run-time costs.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 25","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8263","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, privacy-preserving distributed deep learning (PPDDL) is re-visited with a specific application to diagnosing long-term illness like diabetic retinopathy. In order to protect the privacy of participants datasets, a multi-key PPDDL solution is proposed which is robust against collusion attacks and is also post-quantum robust. Additionally, the PPDDL solution provides robust network security in terms of integrity of transmitted ciphertexts and keys, forward secrecy, and prevention of man-in-the-middle attacks and is extensively verified using Verifpal. Proposed solution is evaluated on retina image datasets to detect diabetic retinopathy, with deep learning accuracy results of 96.30%, 96.21% and 96.20% for DDL, DDL + SINGLE and DDL + MULTI scenarios respectively. Results from our simulation indicate that accuracy of the PPDDL is maintained while protecting the privacy of the datasets of participants. Our proposed solution is also efficient in terms of the communication and run-time costs.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.